[1] 官嫣嫣, 庄佳才. 基于风险管理的海上风电进度管理方法研究 [J]. 南方能源建设, 2022, 9(1): 34-39. DOI:  10.16516/j.gedi.issn2095-8676.2022.01.005.

GUAN Y Y, ZHUANG J C. Research on schedule management method of offshore wind power based on risk management [J]. Southern energy construction, 2022, 9(1): 34-39. DOI:  10.16516/j.gedi.issn2095-8676.2022.01.005.
[2] 蔡绍宽. 双碳目标的挑战与电力结构调整趋势展望 [J]. 南方能源建设, 2021, 8(3): 8-17. DOI:  10.16516/j.gedi.issn2095-8676.2021.03.002.

CAI S K. Challenges and prospects for the trends of power structure adjustment under the goal of carbon peak and neutrality [J]. Southern energy construction, 2021, 8(3): 8-17. DOI:  10.16516/j.gedi.issn2095-8676.2021.03.002.
[3] SPAGNOLI G, DE HOLLANDA CAVALCANTI TSUHA C. A review on the behavior of helical piles as a potential offshore foundation system [J]. Marine georesources & geotechnology, 2020, 38(9): 1013-1036. DOI:  10.1080/1064119X.2020.1729905.
[4] International Energy Agency. World energy outlook 2020 [EB/OL]. [2023-05-17]. https://www.iea.org/reports/world-energy-outlook-2020.
[5] RATHOD D, NIGITHA D, KRISHNANUNNI K T. Experimental investigation of the behavior of monopile under asymmetric two-way cyclic lateral loads [J]. International journal of geomechanics, 2021, 21(3): 06021001. DOI:  10.1061/(asce)gm.1943-5622.0001920.
[6] YANG B, WEI K X, YANG W X, et al. A feasibility study of reducing scour around monopile foundation using a tidal current turbine [J]. Ocean engineering, 2021, 220: 108396. DOI:  10.1016/j.oceaneng.2020.108396.
[7] 丁红岩, 李彦娥, 张浦阳, 等. 海上风电四筒导管架基础下放过程试验研究 [J]. 天津大学学报(自然科学与工程技术版), 2022, 55(8): 792-801. DOI:  10.11784/tdxbz202107044.

DING H Y, LI Y E, ZHANG P Y. Experimental investigation of an offshore wind turbine four-bucket jacket foundation during lowering operation [J]. Journal of Tianjin University (science and technology), 2022, 55(8): 792-801. DOI:  10.11784/tdxbz202107044.
[8] 乐丛欢, 任建宇, 姜明涛, 等. 砂土中四筒导管架风机基础抗弯承载力研究 [J]. 海洋工程, 2021, 39(2): 12-19. DOI:  10.16483/j.issn.1005-9865.2021.02.002.

LE C H, REN J Y, JIANG M T, et al. Analysis of the moment bearing capacity of four-bucket jacket foundation in sandy soil [J]. The ocean engineering, 2021, 39(2): 12-19. DOI:  10.16483/j.issn.1005-9865.2021.02.002.
[9] 张海锋, 马娜. 光伏支架基础形式介绍及基础设计的探讨 [J]. 太阳能, 2020, 320(12): 66-70. DOI:  10.3969/j.issn.1003-0417.2020.12.011.

ZHANG H F, MA N. Introduction of foundation form of PV bracket and discussion of foundation design [J]. Solar energy, 2020, 320(12): 66-70. DOI:  10.3969/j.issn.1003-0417.2020.12.011.
[10] AL-BAGHDADI T. Screw piles as offshore foundations: numerical and physical modelling [D]. Dundee: University of Dundee, 2018.
[11] PÉREZ Z A, SCHIAVON J A, TSUHA C D H C, et al. Numerical and experimental study on influence of installation effects on behaviour of helical anchors in very dense sand [J]. Canadian geotechnical journal, 2018, 55(8): 1067-1080. DOI:  10.1139/cgj-2017-0137.
[12] Supportworks. Technical manual [R]. Cary Circle: Supportworks, 2017.
[13] RICHARDS D, BLAKE A, WHITE D, et al. Field tests assessing the installation performance of screw pile geometries optimised for offshore wind applications [C]//1st International Symposium on Screw Piles for Energy Applications, Dundee, UK, May 27-28, 2019. Dundee: University of Dundee, 2019: 47-54.
[14] LIN Y F, XIAO J D, LE C H, et al. Bearing characteristics of helical pile foundations for offshore wind turbines in sandy soil [J]. Journal of marine science and engineering, 2022, 10(7): 889. DOI:  10.3390/JMSE10070889.
[15] ACKERMANN T, SÖDER L. An overview of wind energy-status 2002 [J]. Renewable and sustainable energy reviews, 2002, 6(1/2): 67-127. DOI:  10.1016/S1364-0321(02)00008-4.
[16] PERKO H A. Helical piles: a practical guide to design and installation [M]. Hoboken: John Wiley & Sons, 2009. DOI:  10.1002/9780470549063.
[17] 陈青山. 砂土中海上风电螺旋桩基础竖向承载特性研究 [D]. 天津: 天津大学, 2020. DOI:  10.27356/d.cnki.gtjdu.2020.004614.

CHEN Q S. Research on vertical bearing characteristics of screw pile foundation for offshore wind turbine in sand [D]. Tianjin: Tianjin University, 2020. DOI:  10.27356/d.cnki.gtjdu.2020.004614.
[18] 王乐. 细粒石英砂中螺旋桩施工过程及上拔承载性能研究 [D]. 天津: 天津大学, 2019. DOI:  10.27356/d.cnki.gtjdu.2019.002107.

WANG L. Study on the construction process and uplift capacity of helical piles in fine silica sand [D]. Tianjin: Tianjin University, 2019. DOI:  10.27356/d.cnki.gtjdu.2019.002107.
[19] CLEMENCE S P, LUTENEGGER A J. Industry survey of state of practice for helical piles and tiebacks [J]. DFI journal-the journal of the deep foundations institute, 2015, 9(1): 21-41. DOI:  10.1179/1937525514Y.0000000007.
[20] BYRNE B W, HOULSBY G T. Helical piles: an innovative foundation design option for offshore wind turbines [J]. Philosophical transactions of the royal society A: mathematical, physical and engineering sciences, 2015, 373(2035): 20140081. DOI:  10.1098/rsta.2014.0081.
[21] FATEH A M A, ESLAMI A, FAHIMIFAR A. Direct CPT and CPTu methods for determining bearing capacity of helical piles [J]. Marine georesources & geotechnology, 2017, 35(2): 193-207. DOI:  10.1080/1064119X.2015.1133741.
[22] DING H Y, WANG L, ZHANG P Y, et al. Study on the lateral bearing capacity of single-helix pile for offshore wind power [C]//Proceedings of the ASME 2018 37th International Conference on Ocean, Offshore and Arctic Engineering, Madrid, Spain, June 17-22, 2018. Madrid: ASME, 2018.
[23] WANG L, ZHANG P Y, DING H Y, et al. The uplift capacity of single-plate helical pile in shallow dense sand including the influence of installation [J]. Marine structures, 2020, 71: 102697. DOI:  10.1016/j.marstruc.2019.102697.
[24] DING H Y, WANG L, ZHANG P Y, et al. The recycling torque of a single-plate helical pile for offshore wind turbines in dense sand [J]. Applied sciences, 2019, 9(19): 4105. DOI:  10.3390/app9194105.
[25] 周航, 余昊, 曾少华. 饱和黏土中螺旋桩安装效应对抗拔承载力影响的试验研究 [J]. 岩土力学, 2022, 43(12): 3249-3258. DOI:  10.16285/j.rsm.2022.0137.

ZHOU H, YU H, ZENG S H. Experimental study of the installation effect of helical piles in saturated clay on uplift resistance [J]. Rock and soil mechanics, 2022, 43(12): 3249-3258. DOI:  10.16285/j.rsm.2022.0137.
[26] 胡伟, 孟建伟, 刘顺凯, 等. 单螺旋锚桩水平承载机理试验与理论研究 [J]. 岩土工程学报, 2020, 42(1): 158-167. DOI:  10.11779/CJGE202001018.

HU W, MENG J W, LIU S K, et al. Experimental and theoretical researches on horizontal bearing mechansim of single screw anchor pile [J]. Chinese journal of geotechnical engineering, 2020, 42(1): 158-167. DOI:  10.11779/CJGE202001018.
[27] 韦芳芳, 邵盛, 陈道申, 等. 黏土中倾斜螺旋桩的水平承载性能数值模拟及理论研究 [J]. 东南大学学报(自然科学版), 2021, 51(3): 463-472. DOI:  10.3969/j.issn.1001-0505.2021.03.015.

WEI F F, SHAO S, CHEN D S, et al. Numerical simulation and theoretical research on horizontal bearing capacity of inclined helical pile in clay [J]. Journal of southeast university (natural science edition), 2021, 51(3): 463-472. DOI:  10.3969/j.issn.1001-0505.2021.03.015.
[28] 李青松, 文磊, 孔纲强, 等. 基于孔扩张理论的螺旋桩抗拔承载力计算分析 [J]. 岩土力学, 2021, 42(4): 1088-1094, 1103. DOI:  10.16285/j.rsm.2020.1329.

LI Q S, WEN L, KONG G Q, et al. Theoretical computation of the uplift bearing capacity of helical piles based on cavity expansion method [J]. Rock and soil mechanics, 2021, 42(4): 1088-1094, 1103. DOI:  10.16285/j.rsm.2020.1329.
[29] 刘志鹏, 孔纲强, 文磊, 等. 螺旋桩竖向抗拔极限承载力理论计算分析 [J]. 中南大学学报(自然科学版), 2021, 52(10): 3659-3667. DOI:  10.11817/j.issn.1672-7207.2021.10.028.

LIU Z P, KONG G Q, WEN L, et al. Theoretical calculation on ultimate bearing capacity of helical piles under tension [J]. Journal of Central South University (science and technology), 2021, 52(10): 3659-3667. DOI:  10.11817/j.issn.1672-7207.2021.10.028.
[30] LANYI-BENNETT S A, DENG L J. Axial load testing of helical pile groups in glaciolacustrine clay [J]. Canadian geotechnical journal, 2019, 56(2): 187-197. DOI:  10.1139/cgj-2017-0425.
[31] ALBUSODA B S, ABBASE H O. Performance assessment of single and group of helical piles embedded in expansive soil [J]. International journal of geo-engineering, 2017, 8(1): 25. DOI:  10.1186/s40703-017-0063-x.