[1] 国家能源局. 国家能源局发布2022年全国电力工业统计数据 [EB/OL]. (2023-01-18) [2023-04-09]. http://www.nea.gov.cn/2023-01/18/c_1310691509.htm.

National Energy Administration. National Energy Administration releases 2022 national electric power industry statistical data [EB/OL]. (2023-01-18) [2023-01-18]. http://www.nea.gov.cn/2023-01/18/c_1310691509.htm.
[2] 中国国家发展和改革委员会能源研究所. 2020年中国可再生能源展望报告 [R]. 北京: 国家发改委, 2021.

Energy Research Institute of National Development and Reform Commission. 2020 China renewable energy outlook report [R]. Beijing: National Development and Reform Commission, 2021.
[3] 陈海生, 刘畅, 徐玉杰, 等. 储能在碳达峰碳中和目标下的战略地位和作用 [J]. 储能科学与技术, 2021, 10(5): 1477-1485. DOI:  10.19799/j.cnki.2095-4239.2021.0389.

CHEN H S, LIU C, XU Y J, et al. The strategic position and role of energy storage under the goal of carbon peak and carbon neutrality [J]. Energy storage science and technology, 2021, 10(5): 1477-1485. DOI:  10.19799/j.cnki.2095-4239.2021.0389.
[4] 万永江, 韩爽, 闫亚敏,等. 风光制氢容量配置优化研究及绿氢经济性分析 [J]. 内蒙古电力技术, 2023, 41(1): 8-14. DOI:  10.19929/j.cnki.nmgdljs.2023.0002.

WAN Y J, HAN S, YAN Y M, et al.Research on optimization of capacity allocation of wind power and photovoltaic hydrogen production and economic analysis of green hydrogen [J]. Inner Mongolia electric power, 2023, 41(1): 8-14. DOI:  10.19929/j.cnki.nmgdljs.2023.0002.
[5] ZHANG Y, LI J, JI X, et al. Optimal dispatching of electric‐heat‐hydrogen integrated energy system based on Stackelberg game [J]. Energy conversion and economics, 2023, 4(4): 267-275. DOI:  10.1049/enc2.12094.
[6] 中国电力企业联合会. 新能源配储能运行情况调研报告 [R/OL]. (2022-11-14) [2023-04-09]. https://cec.org.cn/detail/index.html?3-315493.

China Electricity Council. New energy distribution storage operation research report [R/OL]. (2022-11-14) [2023-04-09]. https://cec.org.cn/detail/index.html?3-315493.
[7] 李红霞, 李建林, 米阳. 新能源侧储能优化配置技术研究进展 [J]. 储能科学与技术, 2022, 11(10): 3257-3267. DOI:  10.19799/j.cnki.2095-4239.2022.0102.

LI H X, LI J L, MI Y. Summary of research on new energy side energy storage optimization configuration technology [J]. Energy storage science and technology, 2022, 11(10): 3257-3267. DOI:  10.19799/j.cnki.2095-4239.2022.0102.
[8] 马建力, 李琦, 陈祥荣, 等. 电转气地质储能技术的经济性分析 [J]. 工程科学与技术, 2022, 54(1): 117-127. DOI:  10.15961/j.jsuese.202100255.

MA J L, LI Q, CHEN X R, et al. Economic analysis of power-to-gas based subsurface energy storage technology [J]. Advanced engineering sciences, 2022, 54(1): 117-127. DOI:  10.15961/j.jsuese.202100255.
[9] 李辰. 电化学储能技术分析 [J]. 电子元器件与信息技术, 2019, 3(6): 74-78. DOI:  10.19772/j.cnki.2096-4455.2019.6.020.

LI C. Analysis of electrochemical energy storage technologies [J]. Electronic component and information technology, 2019, 3(6): 74-78. DOI:  10.19772/j.cnki.2096-4455.2019.6.020.
[10] XIU X Q, LI J L, HUI D. Sizing and economic analysis of lithium-ion battery energy storage system [J]. Applied mechanics and materials, 2013, 291-294: 627-631. DOI:  10.4028/www.scientific.net/AMM.291-294.627.
[11] KANTHARAJ B, GARVEY S, PIMM A. Thermodynamic analysis of a hybrid energy storage system based on compressed air and liquid air [J]. Sustainable energy technologies and assessments, 2015, 11: 159-164. DOI:  10.1016/j.seta.2014.11.002.
[12] 郝佳豪, 越云凯, 张家俊, 等. 二氧化碳储能技术研究现状与发展前景 [J]. 储能科学与技术, 2022, 11(10): 3285-3296. DOI:  10.19799/j.cnki.2095-4239.2022.0199.

HAO J H, YUE Y K, ZHANG J J, et al. Research status and development prospect of carbon dioxide energy-storage technology [J]. Energy storage science and technology, 2022, 11(10): 3285-3296. DOI:  10.19799/j.cnki.2095-4239.2022.0199.
[13] 吴思成. 压缩CO2储能的系统分析及实验验证 [D]. 天津: 天津商业大学, 2019.

WU S C. System analysis and experimental verification of compressed CO2 energy storage [D]. Tianjin: Tianjin University of Commerce, 2019.
[14] CAO Z, DENG J Q, ZHOU S H, et al. Research on the feasibility of compressed carbon dioxide energy storage system with underground sequestration in antiquated mine goaf [J]. Energy conversion and management, 2020, 211: 112788. DOI:  10.1016/j.enconman.2020.112788.
[15] BARTELA Ł, SKOREK-OSIKOWSKA A, DYKAS S, et al. Thermodynamic and economic assessment of compressed carbon dioxide energy storage systems using a post-mining underground infrastructure [J]. Energy conversion and management, 2021, 241: 114297. DOI:  10.1016/j.enconman.2021.114297.
[16] 郝银萍, 何青, 刘文毅. 多级回热式跨临界压缩二氧化碳储能系统热力性能分析 [J]. 热能动力工程, 2020, 35(4): 16-23. DOI:  10.16146/j.cnki.rndlgc.2020.04.003.

HAO Y P, HE Q, LIU W Y. Thermal performance analysis of multi-stage regenerative transcritical compressed carbon dioxide energy storage system [J]. Journal of engineering for thermal energy and power, 2020, 35(4): 16-23. DOI:  10.16146/j.cnki.rndlgc.2020.04.003.
[17] ASTOLFI M, RIZZI D, MACCHI E, et al. A novel energy storage system based on carbon dioxide unique thermodynamic properties [J]. Journal of engineering for gas turbines and power, 2022, 144(8): 081012. DOI:  10.1115/1.4054750.
[18] 佚名. 东方汽轮机建设的全球首个二氧化碳+飞轮储能示范项目成功竣工 [J]. 东方电气评论, 2022, 36(3): 88. DOI:  10.3969/j.issn.1001-9006.2022.03.022.

Anonymous. The world's first carbon dioxide + flywheel energy storage demonstration project built by Oriental Steam Turbine was successfully completed [J]. Dongfang electric review, 2022, 36(3): 88. DOI:  10.3969/j.issn.1001-9006.2022.03.022.
[19] 李玉平. 压缩二氧化碳储能系统的热力学性能分析 [D]. 保定: 华北电力大学, 2018.

LI Y P. Thermal performance analysis of the compressed carbon dioxide energy storage system [D]. Baoding: North China Electric Power University, 2018.
[20] ZHAO P, XU W P, ZHANG S Q, et al. Components design and performance analysis of a novel compressed carbon dioxide energy storage system: a pathway towards realizability [J]. Energy conversion and management, 2021, 229: 113679. DOI:  10.1016/j.enconman.2020.113679.
[21] DAI B M, LI M X, MA Y T. Thermodynamic analysis of carbon dioxide blends with low GWP (global warming potential) working fluids-based transcritical Rankine cycles for low-grade heat energy recovery [J]. Energy, 2014, 64: 942-952. DOI:  10.1016/j.energy.2013.11.019.
[22] 舒歌群, 高媛媛, 田华. 基于分析的内燃机排气余热ORC混合工质性能分析 [J]. 天津大学学报(自然科学与工程技术版), 2014, 47(3): 218-223. DOI:  10.11784/tdxbz201301036.

SHU G Q, GAO Y Y, TIAN H. Performance analysis of mixtures used in ORC for engine exhaust gas waste heat recovery based on exergy analysis [J]. Journal of Tianjin university (science and technology), 2014, 47(3): 218-223. DOI:  10.11784/tdxbz201301036.
[23] 刘旭, 杨绪青, 刘展. 一种新型的基于二氧化碳混合物的液体储能系统 [J]. 储能科学与技术, 2021, 10(5): 1806-1814. DOI:  10.19799/j.cnki.2095-4239.2021.0303.

LIU X, YANG X Q, LIU Z. A novel liquid energy storage system based on a carbon dioxide mixture [J]. Energy storage science and technology, 2021, 10(5): 1806-1814. DOI:  10.19799/j.cnki.2095-4239.2021.0303.
[24] ZHAO P, XU W P, GOU F F, et al. Performance analysis of a self-condensation compressed carbon dioxide energy storage system with vortex tube [J]. Journal of energy storage, 2021, 41: 102995. DOI:  10.1016/j.est.2021.102995.
[25] LIU Z, LIU Z H, XIN X, et al. Proposal and assessment of a novel carbon dioxide energy storage system with electrical thermal storage and ejector condensing cycle: energy and exergy analysis [J]. Applied energy, 2020, 269: 115067. DOI:  10.1016/j.apenergy.2020.115067.
[26] XU M J, ZHAO P, HUO Y W, et al. Thermodynamic analysis of a novel liquid carbon dioxide energy storage system and comparison to a liquid air energy storage system [J]. Journal of cleaner production, 2020, 242: 118437. DOI:  10.1016/j.jclepro.2019.118437.
[27] LIU Z, LIU Z H, YANG X Q, et al. Advanced exergy and exergoeconomic analysis of a novel liquid carbon dioxide energy storage system [J]. Energy conversion and management, 2020, 205: 112391. DOI:  10.1016/j.enconman.2019.112391.
[28] ZHANG T, CHEN L J, ZHANG X L, et al. Thermodynamic analysis of a novel hybrid liquid air energy storage system based on the utilization of LNG cold energy [J]. Energy, 2018, 155: 641-650. DOI:  10.1016/j.energy.2018.05.041.
[29] 吴毅, 王旭荣, 杨翼, 等. 以液化天然气为冷源的超临界CO2-跨临界CO2冷电联供系统 [J]. 西安交通大学学报, 2015, 49(9): 58-62, 146. DOI:  10.7652/xjtuxb201509011.

WU Y, WANG X R, YANG Y, et al. A combined cooling and power system of supercritical/transcritical CO2 cycle with liquefied natural gas as cool source [J]. Journal of Xi'an Jiaotong university, 2015, 49(9): 58-62, 146. DOI:  10.7652/xjtuxb201509011.
[30] BAO J J, HE X, DENG Y Y, et al. Parametric analysis and multi-objective optimization of a new combined system of liquid carbon dioxide energy storage and liquid natural gas cold energy power generation [J]. Journal of cleaner production, 2022, 363: 132591. DOI:  10.1016/j.jclepro.2022.132591.
[31] WANG M K, ZHAO P, YANG Y, et al. Performance analysis of energy storage system based on liquid carbon dioxide with different configurations [J]. Energy, 2015, 93: 1931-1942. DOI:  10.1016/j.energy.2015.10.075.
[32] 万玉珂, 吴闯, 刘朝, 等. 液态存储跨临界压缩CO2储能系统性能分析 [J]. 西安交通大学学报, 2023, 57(1): 25-33. DOI:  10.7652/xjtuxb202301003.

WAN Y K, WU C, LIU C, et al. Performance analysis of a transcritical compressed CO2 energy storage system based on liquid storage [J]. Journal of Xi'an Jiaotong University, 2023, 57(1): 25-33. DOI:  10.7652/xjtuxb202301003.
[33] SUN W X, LIU X, YANG X Q, et al. Design and thermodynamic performance analysis of a new liquid carbon dioxide energy storage system with low pressure stores [J]. Energy conversion and management, 2021, 239: 114227. DOI:  10.1016/J.ENCONMAN.2021.114227.
[34] ZHANG Y, YAO E R, ZHANG X L, et al. Thermodynamic analysis of a novel compressed carbon dioxide energy storage system with low-temperature thermal storage [J]. International journal of energy research, 2020, 44(8): 6531-6554. DOI:  10.1002/er.5387.
[35] LAI Z Y, ZHOU H, ZHOU M X, et al. Experimental study on storage performance of packed bed solar thermal energy storage system using sintered ore particles [J]. Solar energy materials and solar cells, 2022, 238: 111654. DOI:  10.1016/j.solmat.2022.111654.
[36] MORGAN R, ROTA C, PIKE-WILSON E, et al. The modelling and experimental validation of a cryogenic packed bed regenerator for liquid air energy storage applications [J]. Energies, 2020, 13(9): 5155. DOI:  10.3390/en13195155.
[37] DUTTA R, SANDILYA P. Experimental investigations on cold recovery efficiency of packed-bed in cryogenic energy storage system [J]. IOP conference series: materials science and engineering, 2020, 755(1): 012103. DOI:  10.1088/1757-899x/755/1/012103.
[38] BORRI E, SZE J Y, TAFONE A, et al. Experimental and numerical characterization of sub-zero phase change materials for cold thermal energy storage [J]. Applied energy, 2020, 275: 115131. DOI:  10.1016/j.apenergy.2020.115131.
[39] TAFONE A, BORRI E, CABEZA L F, et al. Innovative cryogenic phase change material (PCM) based cold thermal energy storage for liquid air energy storage (LAES) - numerical dynamic modelling and experimental study of a packed bed unit [J]. Applied energy, 2021, 301: 117417. DOI:  10.1016/j.apenergy.2021.117417.
[40] 刘金平, 滕林, 陈向阳. 区域供冷与蓄冷技术发展动态 [J]. 南方能源建设, 2020, 7(3): 1-5. DOI:  10.16516/j.gedi.issn2095-8676.2020.03.001.

LIU J P, TENG L, CHEN X Y. Development trend of district cooling and cool storage technology [J]. Southern energy construction, 2020, 7(3): 1-5. DOI:  10.16516/j.gedi.issn2095-8676.2020.03.001.
[41] 章学来, 徐笑锋, 周孙希, 等. 蓄冷技术在冷链物流中的研究进展 [J]. 制冷与空调, 2017, 17(12): 88-92. DOI:  10.3969/j.issn.1009-8402.2017.12.020.

ZHANG X L, XU X F, ZHOU S X, et al. Research progress of cold storage technology in cold chain logistics [J]. Refrigeration and air-conditioning, 2017, 17(12): 88-92. DOI:  10.3969/j.issn.1009-8402.2017.12.020.
[42] 丁军丹. 低温共晶盐蓄冷研究 [D]. 南京: 南京理工大学, 2017.

DING J D. The research of low-temperature eutectic salt [D]. Nanjing: Nanjing University of Science and Technology, 2017.
[43] 袁园, 章学来. −43 ℃新型复合低温相变材料的制备及热性能研究 [C]//2013中国制冷学会学术年会论文集, 武汉, 2013-11-05. 武汉: 中国制冷学会, 2013: 178.

YUAN Y, ZHANG X L. The preparation of the new −43 ℃ composite phase change material and the thermal performance study [C]//Proceedings of 2013 Annual Conference of China Refrigeration Society, Wuhan, November 5, 2013. Wuhan: Annual Conference of China Refrigeration Society, 2013: 178.