

高压直流转换开关避雷器改造方案研究

卢毓欣,赵晓斌,秦康,徐迪臻,辛清明,郭龙

引用本文:

卢毓欣, 赵晓斌, 秦康, 徐迪臻, 辛清明, 郭龙. 高压直流转换开关避雷器改造方案研究[J]. 南方能源建设, 2022, 9(1): 76-85. LU Yuxin,ZHAO Xiaobin,QIN Kang,XU Dizhen,XIN Qingming,GUO Long. Research on the Modification Plan of HVDC Transfer Switch Arrester[J]. Southern Energy Construction, 2022, 9(1): 76-85.

ENERGY

PRFSS

相似文章推荐(请使用火狐或IE浏览器查看文章)

Similar articles recommended (Please use Firefox or IE to view the article)

500 kV海底电缆雷电过电压研究

Research on Lightning Overvoltage of 500 kV Submarine Cable Lines 南方能源建设. 2016, 3(2): 62–66 https://doi.org/10.16516/j.gedi.issn2095-8676.2016.02.012

避雷器安装方案对线路耐雷性能的影响研究

Influence of Arrester Installation Scheme on Line Lightning Protection Performance 南方能源建设. 2017, 4(1): 75-80,101 https://doi.org/10.16516/j.gedi.issn2095-8676.2017.01.014

Matlab/SPS与EMTP的操作过电压仿真分析及比较

Switching Overvoltage Simulation Analysis and Comparision Between Matlab/SPS and EMTP 南方能源建设. 2015, 2(z1): 35-37,92 https://doi.org/10.16516/j.gedi.issn2095-8676.2015.S1.008

换流站综合在线监测系统配置及接口研究

Research on Configuration and Interface of Integration Online-monitoring System of Converter Station 南方能源建设. 2016, 3(2): 96-101 https://doi.org/10.16516/j.gedi.issn2095-8676.2016.02.019

±800kV极导线与接地极线共塔线路耐雷性能及双极闭锁反事故措施分析

Analysis on the Lightning Performance and Anti–accident Measures of \pm 800 kVBipolar Blocking of Polar Wires and Electrode Wires on the Same Tower

南方能源建设. 2018, 5(4): 86-91 https://doi.org/10.16516/j.gedi.issn2095-8676.2018.04.013

DOI: 10. 16516/j. gedi. issn2095-8676. 2022. 01. 012

高压直流转换开关避雷器改造方案研究

卢毓欣[∞],赵晓斌,秦康,徐迪臻,辛清明,郭龙 (直流输电技术国家重点实验室(南方电网科学研究院有限责任公司),广东广州510663)

摘要:[目的]国内高压直流输电工程在进行单极大地/金属运行方式转换时,曾发生过数次MRTB(金属回线转换开 关)或ERTB(大地回线转换开关)振荡平台避雷器损坏导致转换失败的情况。因此需要对直流转换开关避雷器几种 改造方案进行研究。[方法]针对直流转换开关避雷器吸收能量高、通流时间长以及压比较高的特点,本文从避雷器 吸收能量、通流时间和过电压等的计算结果判断增加避雷器柱数和每柱串联阀片数两种改造方案能否改善避雷器的运 行环境,并分析了对其他相关设备绝缘水平的影响以及对设备布置的影响。[结果]增加避雷器柱数对改善避雷器运 行特性无明显作用。增加避雷器单柱片数可降低避雷器通流时间,但将提高断路器和振荡回路电容器绝缘水平。[结 论]不建议对现有换流站直流转换开关避雷器进行增加避雷器柱数或片数的改造。可在较低功率水平下进行转换以降 低避雷器应力。若避雷器能量裕度足够,在因阀片缺陷引起避雷器故障的情况下可采取拆除故障台并继续运行的 措施。

关键词: 直流转换开关; 避雷器; 吸收能量; 通流时间; 过电压 中图分类号: TM7; TM564 文献标志码: A 文章编号

文章编号: 2095-8676(2022)01-0076-10 开放科学(资源服务)二维码:

Research on the Modification Plan of HVDC Transfer Switch Arrester

LU Yuxin[⊠], ZHAO Xiaobin, QIN Kang, XU Dizhen, XIN Qingming, GUO Long (State Key Laboratory of HVDC, Electric Power Research Institute, CSG, Guangzhou 510663, Guangdong, China)

Abstract: [Introduction] During the earth return and metallic return mode conversion of China's HVDC transmission projects in operation, several MRTB (metallic return transfer breaker) or ERTB (earth return transfer breaker) oscillation platform arrester damage have occurred, leading to conversion failure. Therefore, it is necessary to study several modification plans of DC transfer breaker arrester. [Method] Regarding the characteristics of high energy absorption, long current flow time and high ratio of residual voltage to reference voltage of the DC transfer switch arrester, the calculation results of the arrester's absorbed energy, flow time and overvoltage were proposed to judge whether the two modification plans of increasing the number of arrester columns and increasing the number of valves in series per column could improve the operation environment of the arrester, and the impact on the insulation level of other equipment and the arrangement of equipment were also analyzed in this paper. [Result] Increasing the number of valves in series per column could improving the operation characteristics of the arrester. Increasing the number of valves in series per column flow time of the arrester but will increase the insulation level of the circuit breaker and the capacitor of the oscillation circuit. [Conclusion] It is not recommended to increase the number of columns or the number of valves in series per column of the HVDC transfer switch arrester in the existing converter station. It can be transferred at a lower power level to reduce the stress of the arrester. If the energy margin of the arrester is sufficient, measures can be taken to remove the faulty unit and continue operation in the event that the arrester fails due to valve defects.

Key words: DC transfer switch; arrester; absorbed energy; flow time; overvoltage

2095-8676 © 2022 Energy China GEDI. Publishing services by Energy Observer Magazine Co., Ltd. on behalf of Energy China GEDI. This is an open access article under the CC BY-NC license (https://creativecommons.org/licenses/by-nc/4.0/).

收稿日期: 2021-08-12 修回日期: 2021-11-25

基金项目:南方电网公司科技项目"500kV直流工程标准化成套设计方案研究"(ZBKJXM20180722)

0 引 言

高压直流转换开关是实现直流输电工程单极运 行方式转换的重要设备。国内高压直流工程包括葛 南直流输电工程^[1-2]、天广直流输电工程^[3]、云广 直流输电工程^[4]、银东直流输电工程^[5-7]、团林直 流输电工程^[8]等,在进行大地/金属方式转换时. 曾发生过数次 MRTB 或 ERTB 故障导致转换失败, 分析原因多为振荡回路避雷器阀片故障、柱间特性 不一致等导致避雷器击穿所致。与直流输电工程中 其他类型直流避雷器相比, 直流转换开关避雷器的 运行工况较为特殊,其工作吸收能量大,通流时间 长^[9-13]。一般直流避雷器通流持续时间不超过数毫 秒,而直流转换开关避雷器动作持续时间较长,可 达几十至几百毫秒,目前相关标准中对于直流避雷 器的长波小电流工况并无相应考核要求 [14-15]。部分 工程直流转换开关避雷器操作冲击保护水平/参考 电压(压比)较高,运行条件较苛刻。本文以 MRTB 避雷器为例,计算分析增加直流转换开关避 雷器柱数和增加每柱串联阀片数两种改造方式对避 雷器动作时间和压比等参数的影响,判断其是否能 够改善避雷器的运行环境,明确换流站 MRTB 避雷 器改造的可行性和必要性。

1 直流工程MRTB避雷器技术参数

以南方电网公司部分直流工程为例,MRTB避 雷器设计参数和实际供货参数配置如表1所示。 MRTB避雷器操作冲击保护水平/参考电压(压比) 如表2所示。

表1 MRTB避雷器参数

Tab. 1	Parameters of MRTB arrester

	MRTB 避雷器	普侨	楚穗	金中	牛从	
	MCOV/kV	>52	>52	>45	>45	
	操作冲击保护水平/kV	124	124	88	83.2	
参数	配合电流/kA	3.2	4	4	2.6	
要求	计算能量耐受/MJ	16.2	20.0	10.0	13.5	
	(1.2 p.u. 过负荷下单次转换)	16. 3	20.8	18. 3		
	要求能量耐受/MJ	27.2	34	36.6	27	
	额定电压/kV	69	69	49	49	
UL AN	并联柱数	16×4	20×4	68×4	92×4	
供页 全粉	配合电流/柱/A	50	50	15	7	
参 奴	实际能量耐受/MJ	27.2	34	95.2	128.8	
	生产厂家	I	A	В		

表 2 MRTB避雷器压比 Tab. 2 Ratio of residual voltage to reference voltage of MRTB arrester

	MRTB 避雷器	普侨	楚穗	金中	牛从
	直流参考电压/kV	98~102	98	81	72
技术	操作冲击保护水平/kV	124	124	88	83.2
参数	操作冲击保护水平/	1. 22 ~ 1. 27	1.27	1.09	1.16
	且沉奓弯电压				

注:金中直流避雷器操作冲击保护水平88 kV由试验数据线性插值 法得出,实际数据较88 kV大。普侨直流参考电压试验数据为 102 kV。

直流系统单极运行方式转换过程中,MRTB避 雷器吸收能量大,单次转换过程吸收能量一般达十 几MJ,避雷器需采用多柱并联的结构,对避雷器 的均流特性和能量耐受能力的要求高。±800 kV 普 侨和楚穗直流工程由厂家A供货,±500 kV金中与 牛从直流工程由厂家B供货。金中与牛从直流工程 实际供货的避雷器柱数和能量裕度是普侨和楚穗直 流工程的数倍,压比略低。比如牛从直流工程 MRTB避雷器柱数约为普侨直流工程的6倍,牛从 和普侨直流工程MRTB避雷器的压比分别是1.16和 1.22~1.27。

2 MRTB避雷器改造方案及参数设计

以±800 kV 普侨直流为例,对 MRTB 避雷器增 加柱数或每柱片数的改造方案可行性和必要性进行 分析计算。经比较多家主流直流避雷器厂家最新提 供的直流工程用避雷器阀片的单阀片伏安特性,确 定采用其中一种阀片特性进行计算即可。厂家A提 供的直流工程用避雷器单阀片典型伏安特性如图1 和表3所示,以其为例,对普洱换流站MRTB 避雷 器改造方案重新进行配置计算。

Tab. 3 Volt-ampere c	haracteristics of sing	le valve of arrester
电流/kA	电压/kV	电压/p.u.
10 ⁻⁶	4.83	1.0000
5×10^{-6}	4.98	1.0311
10 ⁻⁵	5.02	1.0393
10 ⁻⁴	5.25	1.0870
0.001	5.40	1.1180
0.01	5.60	1.1594
0.02	5.65	1.1698
0.03	5.70	1.1801
0.05	5.76	1. 192 5
0.1	5.84	1.2091
0.2	5.96	1.2340
0.4	6.06	1.2547
0.6	6.20	1.2836
0.8	6.35	1.3147
1	6.43	1.3313
2	6.65	1.3768
3	6.85	1.4182
4	6.96	1.4410
5	7.05	1.4596
10	7 40	1 532 1

表3 避雷器单阀片伏安特性

普洱换流站原 MRTB 避雷器设计保护水平 124 kV,配合电流3.2 kA,实际供货64柱。基于厂 家最新提供的典型避雷器阀片伏安特性,在保护水 平不变的基础上,单柱最多可配置21片阀片。

本文对增加避雷器柱数和增加避雷器每柱串联

阀片数两类改造方案进行对比,包括以下方案。

1) 单柱配置20片阀片,64柱。

2) 单柱配置21片阀片,64柱。

3) 单柱配置21片阀片, 128柱。

4) 单柱配置21片阀片, 320柱。

5) 单柱配置25片阀片,64柱。

6) 单柱配置28片阀片,64柱。

7) 单柱配置30片阀片,64柱。

8) 单柱配置40片阀片,64柱。

9) 单柱配置50片阀片,64柱。

3 MRTB避雷器改造方案仿真分析

对普洱站MRTB 避雷器各改造方案进行仿真计 算。在3795A(1.2倍过负荷电流)、3125A(额 定电流)、2400A和1200A直流运行电流下转换 时,不同MRTB 避雷器配置方案对应的避雷器残 压、冲击电流、通流时间和吸收能量对比如表4至 表7所示。其中吸收能量能力按每柱避雷器在5mA 参考电压下5kJ/kV估算得到。原普洱MRTB 避雷 器给出1mA参考电压为102kV,与采用21片现阀 片类似,对应吸收能量能力27.2 MJ。3795A直流 运行电流下避雷器采用64柱每柱21片,320柱每柱 21片,64柱每柱50片的MRTB 避雷器应力波形如 图2至图4所示;1200A直流运行电流下避雷器采 用64柱每柱21片的MRTB 避雷器应力波形如图5 所示。

表4 3 795 A 直流运行电流下转换的 MRTB 避雷器应力 Tab. 4 Stress of MRTB arrester under 3 795 A DC operating current conversion

方案	每柱阀片数	柱数	1 mA	计算残压/kV	残压/参考电压	通流时间/ms	冲击电流/kA	实际吸收	吸收能量	能量裕			
			参考电压/kV					能量/MJ	能力/MJ	度/%			
1	20	64	96.61	115.287	1. 193 3	138	3. 372	16.47	31.87	93			
2	21	64	101.44	121.020	1.1930	126	3. 314	16.18	33.46	106			
3	21	128	101.44	119.500	1.1780	127	3. 592	16.25	66.93	311			
4	21	320	101.44	117.700	1.1603	131	3. 503	16.35	167.33	923			
5	25	64	120.77	143.942	1.1920	101	3.150	15.20	39.84	162			
6	28	64	135.26	160. 926	1. 189 7	86	2.930	14.67	44.62	204			
7	30	64	144. 92	172.230	1.1885	81	2.796	14.28	47.81	234			
8	40	64	193.22	229.371	1.1871	52	2.651	12.98	63.74	391			
9	50	64	241.53	286.625	1. 186 7	37	2.613	11.60	79.68	587			

根据仿真分析,两类改造方案中,增加每柱片 数可显著降低避雷器通流时间,降低吸收能量和冲 击电流,增大吸收能量裕度,但也会显著提高避雷 器保护水平,即使片数增加较多对降低避雷器残 压/参考电压比值也非常不明显。增加柱数可显著 提高吸收能量裕度,可降低避雷器残压/参考电压

	Tab. 5 Stress of IVIH I B arrester under 3 125 A DC operating current conversion													
方案	每柱阀片数	柱数	1 mA 参考电压/kV	计算残压/kV	残压/参考电压	通流时间/ms	冲击电流/kA	实际吸收 能量/MJ	吸收能量 能力/MJ	能量裕度/%				
1	20	64	96.61	114.679	1.187	99	2.644	10.383	31.87	207				
2	21	64	101.44	120. 312	1.186	89	2.542	10.213	33.46	227				
3	21	128	101.44	118.741	1.171	90	2.671	10.249	66.93	553				
4	21	320	101.44	117.084	1.154	95	2.846	10.292	167.33	1 526				
5	25	64	120.77	142.923	1.183	74	2. 281	9.600	39.84	315				
6	28	64	135.26	159.942	1.183	64	2.180	9.248	44.62	382				
7	30	64	144.92	171.363	1.182	55	2.178	9.020	47.81	430				
8	40	64	193.22	228. 429	1.182	37	2.148	7.915	63.74	705				
9	50	64	241.53	285.307	1.181	30	2.051	7.092	79.68	102				

表 5 3 125 A 直流运行电流下转换的 MRTB 避雷器应力 Tab. 5 Stress of MRTB arrester under 3 125 A DC operating current conversio

表6 2400 A 直流运行电流下转换的 MRTB 避雷器应力

Tab. 6	Stress of MRTB	arrester under 2	400 A DC	operating current	t conversion
--------	----------------	------------------	----------	-------------------	--------------

士安	方案 每柱阀片数		1	计算术口机	残压/参考	`````````````````````````````````````	油土由 运 Л. А	实际吸收	吸收能量	総昌公 庙 ///
刀禾	母性 陷 月	住奴	I IIIA 参考电压/KV	Ⅵ异%压/KV	电压	迪伽时间/IIIS	仲面电加KA	能量/MJ	能力/MJ	化里附及1%
1	20	64	96.61	113.808	1.178	67	1.797	5.550	31.87	474
2	21	64	101.44	119.315	1.176	65	1.685	5.463	33.46	512
3	21	128	101.44	117.955	1.162	66	1.713	5.480	66.93	1 121
4	21	320	101.44	115.792	1.141	67	1.960	5.500	167.33	2 942
5	25	64	120.77	141.986	1.176	52	1.657	5.152	39.84	673
6	28	64	135.26	159.005	1.176	50	1.648	4.873	44.62	815
7	30	64	144. 92	170.342	1.175	38	1.639	4.680	47.81	921
8	40	64	193.22	226.823	1.174	29	1.543	4.033	63.74	1 480
9	50	64	241.53	282.114	1.168	22	1.187	3. 251	79.68	2 350

表7 1 200 A 直流运行电流下转换的 MRTB 避雷器应力 Tab. 7 Stress of MRTB arrester under 1 200 A DC operating current conversion

方案	每柱阀片数	柱数	1 mA 参考电压/kV	计算残压/kV	残压/参考电压	通流时间/ms	冲击电流/kA	实际吸收 能量/MJ	吸收能量 能力/MJ	能量裕度/%
1	20	64	96.61	112. 180	1.161	31	0.755	0.963	31.87	3 209
2	21	64	101.44	117.762	1.161	30	0.739	0.926	33.46	3 513
3	21	128	101.44	115.668	1.140	31	0.750	0.933	66.93	7 073
4	21	320	101.44	114.036	1.123	31	0.756	0.943	167.33	17 644
5	25	64	120.77	139. 587	1.156	24	0.592	0.765	39.84	5 107
6	28	64	135.26	155.105	1.146	21	0.466	0.649	44.62	6 775
7	30	64	144.92	165.582	1.142	17	0.408	0.578	47.81	8 171
8	40	64	193.22	216. 599	1.121	12	0.107	0.094	63.74	67 708

值,但柱数需增加较多作用才较为明显。此外避雷 器最大放电电流略增,避雷器通流时间微增。

基于表3中的避雷器阀片伏安特性曲线,若要 将避雷器残压/参考电压控制在1.15以内,仅通过 增加柱数的方式和仅通过增加片数的方式需要的柱 数和片数如表8所示。可见在额定电流及以上无法 将避雷器残压/1 mA参考电压控制在1.15以内。

另外,通过避雷器伏安特性也可大致测算并联 若干柱后对应残压与参考电压之比,即根据柱数计 算最大冲击电流时单柱流过电流,该电流对应的电

图2 3795 A 直流运行电流下转换的 MRTB 避雷器应力(21 片,64 柱)

Fig. 2 Stress of MRTB arresters under 3 795 A DC operating current conversion with 64 columns and 21 valve per column

图3 3795 A 直流运行电流下转换的 MRTB 避雷器应力(21 片,320 柱)

Fig. 3 Stress of MRTB arresters under 3 795 A DC operating current conversion with 320 columns and 21 valve per column

图4 3795 A 直流运行电流下转换的 MRTB 避雷器应力(50 片,64 柱)

Fig. 4 Stress of MRTB arresters under 3 795 A DC operating current conversion with 64 columns and 50 valve per column

图 5 1 200 A 直流运行电流下转换的 MRTB 避雷器应力(21片,64柱)

Fig. 5 Stress of MRTB arresters under 1 200 A DC operating current conversion with 64 columns and 21 valve per column

+ ~

	НЛ
柱数和片数方案	

Tab. 8 The number of columns and pieces meeting the residual voltage / reference voltage below 1.15

改造	参考	3 795 A	3 125 A	2 400 A	1 200 A	
方案	电压	577511	5 125 11	2 100 11	1 200 11	
		>5倍	>5倍	5倍	2倍	
柱数	1 mA	(5倍时压比	(5倍时压比	(5倍时压	(2倍时压	
		1.16)	1.154)	比1.141)	比1.14)	
		> = 0 (= 0 円		>50(50片	28(28片时	
片数	1 mA	>30(30月时)	>50(50月时	时压比	压比	
		压比1.187)	压比1.181)	1.168)	1.146)	

压与参考电压之比。在1.2 p.u. 过负荷电流转换时, 若以1 mA参考电压为基准,采用64柱(2倍)并 联时该比值约为1.19(对应50A),采用320柱(5 倍)并联时该比值约为1.16(对应10A)。

为改善避雷器长波小电流特殊运行工况,考虑 尽量将避雷器通流时间限制在100 ms内。基于表3 中的避雷器阀片伏安特性曲线,额定电流及以下转 换时,避雷器通流时间均在100 ms以内;1.2倍过 负荷电流转换时,避雷器串联阀片数需增加至26 片,在不增加避雷器串联阀片数的情况下无法将避 雷器通流时间控制在100 ms以内。

增加避雷器柱数和片数的措施都可明显提高避 雷器吸收能量安全裕度。为尽量降低避雷器残压/ 参考电压比值,只能增加避雷器并联柱数,采用该 措施主要影响设备布置,不会对避雷器外相关设备 造成影响。增加避雷器片数可降低避雷器通流时 间,但无法明显降低压比,且避雷器保护水平抬高 后需校核MRTB原断路器及振荡回路电容器、电抗 器绝缘水平以及相关布置。

除避雷器本身参数配置变化可对避雷器应力造 成影响外,MRTB进行转换时的直流运行电流对避 雷器应力影响也非常显著。低功率情况下转换时的 避雷器应力较低。现有避雷器在2400A直流运行 电流下转换能量裕度约为500%,在3125A下转换 能量裕度约为200%。若在转换时避雷器出现1支故 障损坏情况,可拆除该支继续运行。

仿真对比了采用16台,每台内并4柱的MRTB 避雷器配置,考虑全部避雷器和因损坏减少1台避 雷器的情况,在2400A直流运行电流下转换时的 MRTB避雷器应力,以及全部避雷器在3125A额 定直流电流下转换时的MRTB避雷器应力,计算结 果见表9。可见同等电流下减少1台避雷器后对残 压、冲击电流、吸收能量影响都不大,减少1台避 雷器后在2400A下转换仍远小于避雷器数量未减 少时在3125A下转换时的避雷器应力。在并联支 数更多的情况下,减少1台的影响会更小,在避雷 器故障台数不多的情况下具备坏一台拆一台继续运 行的可行性。

4 对设备绝缘水平和布置的影响

若增加单柱避雷器片数,将提高避雷器残压, 需校核原 MRTB 断路器以及振荡回路设备绝缘 水平。

表9 MRTB避雷器应力 Tab.9 Stress of MRTB arrester

			2 400	400 A 直流运行电流下转换, 2 400 A 直流			A直流运	≦流运行电流下转换 ,			3 125 A 直流运行电流下转换,				
方	每柱阀	性奴(全部	全部避雷器					少1台;	避雷器			全部避雷器			
案	片数	避雷器/		通流时	冲击电	吸收能		通流时	冲击电	吸收能		通流时	冲击电	吸收能	
		少1台)	残压/kV	间/ms	流/kA	量/MJ	残压/kV	间/ms	流/kA	量/MJ	残压/kV	间/ms	流/kA	量/MJ	
1	20	64/60	113.808	67	1.797	5.550	113.949	70	1.769	5.545	114.679	99	2.644	10.383	
2	21	64/60	119.315	65	1.685	5.463	119.466	67	1.666	5.460	120.312	89	2.542	10. 213	
3	21	128/120	117.955	66	1.713	5.480	118.062	67	1.728	5.482	118.741	90	2.671	10. 249	
4	21	320/300	115.792	67	1.960	5.500	115.960	68	1.945	5.510	117.084	95	2.846	10. 292	
5	25	64/60	141.986	52	1.657	5.152	142.200	53	1.656	5.150	142.923	74	2.281	9.600	
6	28	64/60	159.005	50	1.648	4.873	159.246	50	1.648	4.869	159.942	64	2.180	9.248	
7	30	64/60	170.342	38	1.639	4.680	170. 599	48	1.639	4.677	171.363	55	2.178	9.020	
8	40	64/60	226. 823	29	1.543	4.033	227.140	32	1.542	4.030	228. 429	37	2.148	7.915	
9	50	64/60	282.114	22	1.187	3.251	282. 438	24	1.850	3.248	285.307	30	2.051	7.092	

普侨直流 MRTB 断路器、振荡回路电容器和电抗器端间雷电冲击绝缘水平和操作冲击绝缘水平分别不低于 450 kV/325 kV、250 kV/150 kV 和 95 kV/-。

每柱阀片40片以下时断路器绝缘水平可满足 裕度要求,每柱阀片50片以上时断路器绝缘水平 无法满足裕度要求。

经仿真计算,3795 A 过负荷电流下转换时, 当每柱阀片分别为21/28/40/50 片,电容器端间电压 分别为126/165/230/287 kV,电抗器端间电压均为 14 kV。避雷器残压与电容器端间电压相近,电抗 器端间电压基本不受影响。

根据计算结果,每柱阀片不超过21片才能使 电容器绝缘水平保持为250/150 kV(LIWL/SIWL) 不变,否则需要提高电容器绝缘水平。如需更换电 容器,对造价和布置均有影响。

MRTB 断路器与直流电流测量装置串联后,与 振荡回路避雷器、电容器、电抗器并联。若增加避 雷器柱数,在避雷器单层布置的情况下,振荡回路 设备平台占地面积需加大。若增加单柱避雷器片 数,还需对各设备间空气净距及底部平台受力进行 校核。

5 避雷器故障概率计算

按照现有避雷器标准开展的避雷器阀片试验无 法达到全检验的效果,阀片存在一定缺陷率,在质 量控制较好的情况下缺陷率水平约为千分之几。以 普侨直流为例,MRTB避雷器共16台,每台内并4 柱,每柱24个阀片。假定避雷器单个阀片的缺陷 率分别为0.3%和0.1%的情况下,不同避雷器总台 数时避雷器故障台数概率图如图6和图7所示。可 见随着避雷器柱数增加,发生避雷器故障概率提 高。柱数增加后每柱避雷器通流减小,避雷器故障 率可能会有所降低,但目前无详细支撑数据。

6 结 论

基于典型避雷器阀片伏安特性曲线,对于普洱 换流站MRTB避雷器进行了改造方案计算分析,结 论如下:

 1)通过增加柱数和增加片数两种方式可显著 提高吸收避雷器吸收能量裕度,降功率转换也有明

图7 避雷器故障台数概率图(单片阀片缺陷概率0.3%)

显的效果。但现有避雷器吸收能量裕度足够无需 加大。

 2)在一定功率下转换时,增加片数将提高避 雷器残压,增加柱数可降低避雷器残压的幅度非常 有限。降功率转换对于降低过电压和压比有效。

3)额定及以下电流下转换时,避雷器通流时 间均在100 ms以内; 1.2倍过负荷电流下转换时, 避雷器串联阀片数需增加至26片才能将避雷器通 流时间控制在100 ms以内,增加避雷器柱数无法降 低避雷器通流时间。3 125 A/2 400 A/1 200 A下转 换的通流时间约为1.2倍过负荷转换时的70%/50%/ 25%,吸收能量约为1.2倍过负荷转换时的60%/ 35%/6%。

4) 增加避雷器片数将显著提高 MRTB 断路器 和振荡回路电容器绝缘水平要求。

综上, 增加避雷器柱数对改善避雷器运行特性

无明显作用,增加避雷器单柱片数可降低避雷器通 流时间,但将提高断路器和振荡回路电容器绝缘水 平,因此不建议对已建工程进行相关改造。现场可 在较低功率水平下进行转换以降低避雷器应力。若 避雷器能量裕度足够,在因阀片缺陷引起避雷器故 障的情况下可采取拆除故障台并继续运行的措施。 对于新建工程,应加强避雷器阀片质量控制和试验 检验,降低工程使用的阀片缺陷概率,提升柱间特 性一致性。

参考文献:

[1] 胡宇洋,余珊珊. 葛南直流大地一金属回线转换实例分析
 [J]. 电力系统自动化, 2017, 41(23): 150-155. DOI: 10.7500/
 AEPS20170323003.

HU Y Y, YU S S. Instance analysis of conversion between ground return and metallic return in Gezhouba—Nanqiao HVDC transmission system [J]. Automation of Electric Power Systems, 2017, 41(23): 150-155. DOI: 10.7500/AEPS20170323 003.

- [2] 张致, 娄殿强, 郑劲, 等. 葛洲坝换流站金属转换开关操作引起的避雷器事故分析及对策 [J]. 高压电器,2002, 38(2): 8-11.
 DOI: 10. 3969/j. issn. 1001-1609. 2002. 02. 003.
 ZHANG Z, LOU D Q, ZHENG J, Analysis and countermeasure of surge arrester damage caused by MRTB operation in Gezhouba con-verter station [J]. High Voltage Apparatus, 2002, 38(2): 8-11. DOI: 10. 3969/j. issn. 1001-1609. 2002. 02. 003.
- [3] 雷鸣东.天广直流金属/大地回线转换不成功原因分析 [J].
 高压电器, 2012, 48(8): 86-88+93. DOI: 10. 13296/j. 1001-1609.
 hva. 2012. 08. 017.

LEI M D. Analysis of an unsuccessful conversion from metallic return to ground return in Tianshengqiao—Guangzhou HVDC system [J]. High Voltage Apparatus, 2012, 48(8): 86-88+93. DOI: 10. 13296/j. 1001-1609. hva. 2012. 08. 017.

- [4] 刘劲松,林睿. 楚雄换流站金属回线转换断路器并联谐振回路失效分析 [J].南方电网技术,2014,8(1):22-26.DOI: 10.13648/j.cnki.issn1674-0629.2014.01.005.
 LIU J S, LIN R. Analysis on the resonance circuit failure of metallic return transfer breaker in Chuxiong converter station [J]. Southern Power System Technology, 2014, 8(1): 22-26.DOI: 10.13648/j.cnki.issn1674-0629.2014.01.005.
- [5] 林少伯,王明新,王华伟,等.宁东直流大地回线转金属回线转换失败原因分析与改进建议[J].电力系统保护与控制,2015,43(24):129-134. DOI: 10.7667/j.issn.1674-3415.2015.24.020.

LIN S B, WANG M X, WANG H W, et al. Analysis on transfer failure and improvement suggestion during ground return transferring to metal return in Ningdong HVDC [J]. Power System Protection and Control, 2015, 43(24): 129-134. DOI: 10. 7667/j. issn. 1674-3415. 2015. 24. 020.

 [6] 杨晨, 于晓军, 刘志远.银川东换流站 MRTB转换失败引起闭锁原因分析 [J].宁夏电力, 2015(4): 16-21. DOI: 10.3969/j. issn. 1672-3643. 2015. 04. 004.

YANG C, YU X J, LIU Z Y. Cause analysis on blocking caused by the failure of MRTB transfer in Yinchuan eastern converter station [J]. Ningxia Electric Power, 2015(4): 16-21. DOI: 10. 3969/j. issn. 1672-3643. 2015. 04. 004.

[7] 刘志远,于晓军,杨晨,等.直流换流站金属转换开关用避雷器组研究[J]. 电瓷避雷器, 2020(4): 35-40. DOI: 10.16188/j.
 isa. 1003-8337.2020.04.006.

LIU Z Y, YU X J, YANG C, et al. Study on the arresters for metallic return transfer breaker in DC converter station [J]. Insulators and Surge Arresters, 2020(4): 35-40. DOI: 10. 16188/j. isa. 1003-8337. 2020. 04. 006.

[8] 郑卫红,常聚忠,周建国,等.±500 kV团林换流站金属回线转换开关转换失败原因分析 [J].湖北电力,2017,41(10):1-4. DOI: 10.19308/j.hep.2017.10.001.

ZHENG W H, CHANG J Z, ZHOU J G, et al. Analysis on transfer failure of metallic return transfer breaker in ± 500 kV Tuanlin converter station [J]. Hubei Electric Power, 2017, 41 (10): 1-4. DOI: 10. 19308/j. hep. 2017. 10. 001.

- [9] 刘守豹,侯玉成,盛明珺,等.特高压直流换流站金属回线转换开关电磁暂态特性分析 [J].电力自动化设备,2021,41(6):220-226.DOI: 10.16081/j.epae.202101031.
 LIU S B, HOU Y C, SHENG M J, et al. Analysis of electromagnetic transient characteristics of metallic return transfer breaker in UHVDC converter station [J]. Electric Power Automation Equipment, 2021, 41(6): 220-226.DOI: 10.16081/j.epae.202101031.
 [10] 徐学亭,赵冬一,胡淑慧,等.高压直流转换开关用避雷器的
- 工况分析及关键技术研究 [J]. 电瓷避雷器, 2013(3): 66-70+ 77. DOI: 10. 3969/j. issn. 1003-8337. 2013. 03. 014. XU X T, ZHAO D Y, HU S H, et al. Operating condition analysis and key technologies of surge arrester for HVDC transfer switch [J]. In-sulators and Surge Arresters, 2013(3): 66-70+77. DOI: 10. 3969/j. issn. 1003-8337. 2013. 03. 014.
- [11] 厉天威, 王浩, 项阳, 等. 高压直流工程直流转换开关分析与 仿真 [J]. 南方电网技术, 2014, 8(4): 33-36. DOI: 10. 13648/j. cnki. issn1674-0629. 2014. 04. 006.
 LI T W, WANG H, XIANG Y, et al. Analysis and simulation of HVDC project DC current transfer switch [J]. Southern Power System Technology, 2014, 8(4): 33-36. DOI: 10. 13648/j. cnki. issn1674-0629. 2014. 04. 006.
- [12] 彭畅,温家良,王秀环,等.特高压直流输电系统的直流转换 开关研制 [J].中国电机工程学报,2012,32(16):151-156.
 DOI: 10.13334/j.0258-8013.pcsee.2012.16.021.
 PENG C, WEN J L, WANG X H, et al. Development of DC transfer switch for ultra high voltage DC transmission systems

[J]. Proceedings of the CSEE, 2012, 32(16): 151-156. DOI:
 10. 13334/j. 0258-8013. pcsee. 2012. 16. 021.

[13] 赵畹君.高压直流输电工程技术 [M].北京:中国电力出版 社,2004.

> ZHAO W J. High voltage direct current transmission technology [M]. Beijing: China Electric Power Press, 2004.

 [14] 中华人民共和国国家质量监督检验检疫总局,中国国家标准 化管理委员会.高压直流转换开关:GB/T 25309—2010 [S].
 北京:中国标准出版社,2010.

> State General Administration of the People's Republic of China for Quality Supervision and Inspection and Quarantine, Standardization Administration of the People's Republic of China. High-voltage direct current transfer switches: GB/T 25309— 2010 [S]. Beijing: China Standard Press, 2010.

[15] 中华人民共和国国家质量监督检验检疫总局,中国国家标准 化管理委员会.高压直流换流站无间隙金属氧化物避雷器导则:GB/T 22389—2008 [S].北京:中国标准出版社,2008.
State General Administration of the People's Republic of China for Quality Supervision and Inspection and Quarantine, Standardization Administration of the People's Republic of China. Guidelines of metal oxide surge arresters without gaps for HVDC converter station: GB/T 22389—2008 [S]. Beijing: China Standard Press, 2008. 作者简介:

卢毓欣(通信作者) 1984-,女,江西南昌人,高级工程师, 高电压与绝缘技术硕士,主要从事高压直 流输电技术研究(e-mail)luyx@csg.cn。

项目简介:

项目名称 南方电网公司科技项目 "500kV 直流工程标准化成套设 计方案研究"(ZBKJXM20180722)

承担单位 南方电网科学研究院有限责任公司

项目概述 项目开展直流工程成套设计标准化和优化研究,形成一 套标准化系统研究方案、成套设备选型、成套设计方案及典型造 价,提高工作效率,降低设计、设备、建设造价。

主要创新点 (1) 直流工程各项系统研究、换流站设备选型和成套 设计的标准化; (2) 直流工程各项系统研究、换流站设备选型和成 套设计的优化。

(责任编辑 叶筠英)

南方电网昆明特高压试验研究基地