[1] IEA. The future of hydrogen: seizing today’s opportunities [EB/OL]. (2019-06-14) [2025-02-20]. https://www.iea.org/reports/the-future-of-hydrogen.
[2] CAPURSO T, STEFANIZZI M, TORRESI M, et al. Perspective of the role of hydrogen in the 21st century energy transition [J]. Energy conversion and management, 2022, 251: 114898. DOI:  10.1016/J.ENCONMAN.2021.114898.
[3] GE L J, ZHANG B H, HUANG W T, et al. A review of hydrogen generation, storage, and applications in power system [J]. Journal of energy storage, 2024, 75: 109307. DOI:  10.1016/J.EST.2023.109307.
[4] LI Y F, KIMURA S. Economic competitiveness and environmental implications of hydrogen energy and fuel cell electric vehicles in ASEAN countries: the current and future scenarios [J]. Energy policy, 2021, 148: 111980. DOI:  10.1016/j.enpol.2020.111980.
[5] HASSAN Q, ALGBURI S, SAMEEN A Z, et al. Green hydrogen: a pathway to a sustainable energy future [J]. International journal of hydrogen energy, 2024, 50: 310-333. DOI:  10.1016/J.IJHYDENE.2023.08.321.
[6] YAN J J, JING J, LI Y F. Hydrogen fuel cell commercial vehicles in China: evaluation of carbon emission reduction and its economic value [J]. International journal of hydrogen energy, 2024, 52: 734-749. DOI:  10.1016/J.IJHYDENE.2023.04.164.
[7] NOUSSAN M, RAIMONDI P P, SCITA R, et al. The role of green and blue hydrogen in the energy transition—a technological and geopolitical perspective [J]. Sustainability, 2020, 13(1): 298. DOI:  10.3390/su13010298.
[8] LI Y F, TAGHIZADEH-HESARY F. The economic feasibility of green hydrogen and fuel cell electric vehicles for road transport in China [J]. Energy policy, 2022, 160: 112703. DOI:  10.1016/j.enpol.2021.112703.
[9] Mohammadi A, Babaei R, Jianu O A. Feasibility analysis of sustainable hydrogen production for heavy-duty applications: Case study of highway 401 [J]. Energy, 2023, 282: 128785. DOI:  10.1016/j.energy.2023.128785.
[10] FAZLI-KHALAF M, NADERI B, MOHAMMADI M, et al. Design of a sustainable and reliable hydrogen supply chain network under mixed uncertainties: a case study [J]. International journal of hydrogen energy, 2020, 45(59): 34503-34531. DOI:  10.1016/j.ijhydene.2020.05.276.
[11] LI Y F, SURYADI B, YAN J J, et al. A strategic roadmap for ASEAN to develop hydrogen energy: economic prospects and carbon emission reduction [J]. International journal of hydrogen energy, 2023, 48(30): 11113-11130. DOI:  10.1016/j.ijhydene.2022.12.105.
[12] European Commission. Communication from the commission to the European parliament, the European council, the council, the European economic and social committee and the committee of the regions: REPowerEU Plan [R]. Brussels: European Commission, 2018.
[13] LI Y F, PHOUMIN H. Hydrogen sourced from renewables and clean energy: feasibility of large-scale demonstration projects [J]. International Journal of hydrogen energy, 2022, 47(58): 24464. DOI:  10.1016/j.ijhydene.2022.07.001.
[14] POPOV S, MAKSAKOVA D, BALDYNOV O, et al. Hydrogen energy: a new dimension for the energy cooperation in the northeast Asian region [J]. E3S web of conferences, 2020, 209: 05017. DOI:  10.1051/e3sconf/202020905017.
[15] THOMAS J M, EDWARDS P P, DOBSON P J, et al. Decarbonising energy: the developing international activity in hydrogen technologies and fuel cells [J]. Journal of energy chemistry, 2020, 51: 405-415. DOI:  10.1016/j.jechem.2020.03.087.
[16] BRUCE S, TEMMINGHOFF M, HAYWARD J, et al. National hydrogen roadmap [R]. Canberra: Commonwealth Scientific and Industrial Research Organisation, 2023.
[17] KIMURA S, PHOUMIN H, PURWANTO A J. Energy outlook and energy saving potential in East Asia 2023 [R]. Jakarta: Economic Research Institute for ASEAN and East Asia, 2023.
[18] ASEAN Centre for Energy. 8th ASEAN energy outlook [M]. Jakarta: ASEAN Centre for Energy, 2024: 8.
[19] NEPAL R, PHOUMIN H, KHATRI A. Green technological development and deployment in the association of southeast Asian economies (ASEAN)—at crossroads or roundabout? [J]. Sustainability, 2021, 13(2): 758. DOI:  10.3390/su13020758.
[20] ZHU H M, DUAN L J, GUO Y W, et al. The effects of FDI, economic growth and energy consumption on carbon emissions in ASEAN-5: evidence from panel quantile regression [J]. Economic modelling, 2016, 58: 237-248. DOI:  10.1016/j.econmod.2016.05.003.
[21] UECKERDT F, BAUER C, DIRNAICHNER A, et al. Potential and risks of hydrogen-based e-fuels in climate change mitigation [J]. Nature climate change, 2021, 11(5): 384-393. DOI:  10.1038/s41558-021-01032-7.
[22] IEA. Global hydrogen review 2023 [EB/OL]. (2023-09-22) [2025-02-20]. https://www.iea.org/reports/global-hydrogen-review-2023.
[23] TOLLEY G S, SMITH B A, CARLSON E, et al. Effects of a transition to a hydrogen economy on employment in the United States [R]. Chicago: RCF Economic and Financial Consulting, 2008. DOI:  10.2172/945211.
[24] IEA. Energy technology perspectives 2023 [EB/OL]. (2023-01-12) [2025-02-20]. https://www.iea.org/reports/energy-technology-perspectives-2023.
[25] SCORRANO M, MATHISEN T A, DANIELIS R, et al. Fiscal policies and car choices in Italy and Norway: a scenario analysis based on a stated-preference survey [J]. Case studies on transport policy, 2023, 13: 101037. DOI:  10.1016/J.CSTP.2023.101037.
[26] CHEN B, CHU L X. Decoupling the double jeopardy of climate risk and fiscal risk: a perspective of infrastructure investment [J]. Climate risk management, 2022, 37: 100448. DOI:  10.1016/J.CRM.2022.100448.
[27] TSENG P, LEE J, FRILEY P. A hydrogen economy: opportunities and challenges [J]. Energy, 2005, 30(14): 2703-2720. DOI:  10.1016/j.energy.2004.07.015.
[28] TONGSOPIT S, KITTNER N, CHANG Y, et al. Energy security in ASEAN: a quantitative approach for sustainable energy policy [J]. Energy policy, 2016, 90: 60-72. DOI:  10.1016/J.ENPOL.2015.11.019.
[29] LI Y F, CHANG Y. Road transport electrification and energy security in the association of Southeast Asian Nations: quantitative analysis and policy implications [J]. Energy policy, 2019, 129: 805-815. DOI:  10.1016/j.enpol.2019.02.048.
[30] HAMUKOSHI S S, MAMA N, SHIMANDA P P, et al. An overview of the socio-economic impacts of the green hydrogen value chain in southern Africa [J]. Journal of energy in southern Africa, 2022, 33(3): 12-21. DOI:  10.17159/2413-3051/2022/v33i3a12543.
[31] VOM SCHEIDT F, QU J Y, STAUDT P, et al. Integrating hydrogen in single-price electricity systems: the effects of spatial economic signals [J]. Energy policy, 2022, 161: 112727. DOI:  10.1016/j.enpol.2021.112727.
[32] WIETSCHEL M, HASENAUER U, DE GROOT A. Development of European hydrogen infrastructure scenarios—CO2 reduction potential and infrastructure investment [J]. Energy policy, 2006, 34(11): 1284-1298. DOI:  10.1016/j.enpol.2005.12.019.
[33] KÖHLER J, WIETSCHEL M, WHITMARSH L, et al. Infrastructure investment for a transition to hydrogen automobiles [J]. Technological forecasting and social change, 2010, 77(8): 1237-1248. DOI:  10.1016/j.techfore.2010.03.010.
[34] SUWIDJI P, CHUNG H Y, NG Y H. Progress in practical hydrogen production and utilisation in East Asia [J]. HKIE transactions, 2021, 28(2): 88-101. DOI:  10.33430/V28N2THIE-2020-0047.
[35] BAE J H, CHO G L. A dynamic general equilibrium analysis on fostering a hydrogen economy in Korea [J]. Energy economics, 2010, 32: S57-S66. DOI:  10.1016/j.eneco.2009.03.010.
[36] SILVA C M, FERREIRA A F, BENTO J P C. Impact of hydrogen in the road transport sector for Portugal 2010–2050 [J]. Energy procedia, 2014, 58: 207-214. DOI:  10.1016/j.egypro.2014.10.430.
[37] LEE S H. The impact of the introduction of hydrogen energy into the power sector on the economy and energy [J]. Journal of the Korea academia-industrial cooperation society, 2016, 17(8): 502-507. DOI:  10.5762/KAIS.2016.17.8.502.
[38] MINTZ M, GILLETTE J, MERTES C, et al. Economic impacts associated with commercializing fuel cell electric vehicles in California: an analysis of the California road map using the JOBS H2 model [R]. Argonne: Argonne National Laboratory, 2014.
[39] LEGUIJT C, VAN DEN TOORN E, BACHAUS A, et al. Jobs from investment in green hydrogen [R]. Delft: CE Delft, 2021.
[40] Australian Government. State of hydrogen 2021 [R]. Canberra: Department of Industry, Science, Energy and Resources, Australian Government, 2021.
[41] ALMANSOORI A, SHAH N. Design and operation of a future hydrogen supply chain: multi-period model [J]. International journal of hydrogen energy, 2009, 34(19): 7883-7897. DOI:  10.1016/j.ijhydene.2009.07.109.
[42] BRIDLE R, BEEDELL E. Should governments subsidize hydrogen? [EB/OL]. (2021-01-19) [2025-02-20]. https://www.iisd.org/articles/insight/should-governments-subsidize-hydrogen.
[43] SHAMSI H, TRAN M K, AKBARPOUR S, et al. Macro-level optimization of hydrogen infrastructure and supply chain for zero-emission vehicles on a Canadian corridor [J]. Journal of cleaner production, 2021, 289: 125163. DOI:  10.1016/j.jclepro.2020.125163.
[44] TRENCHER G, TAEIHAGH A, YARIME M. Overcoming barriers to developing and diffusing fuel-cell vehicles: governance strategies and experiences in Japan [J]. Energy policy, 2020, 142: 111533. DOI:  10.1016/j.enpol.2020.111533.
[45] LI Z, WANG W J, YE M, et al. The impact of hydrogen refueling station subsidy strategy on China’s hydrogen fuel cell vehicle market diffusion [J]. International journal of hydrogen energy, 2021, 46(35): 18453-18465. DOI:  10.1016/j.ijhydene.2021.02.214.
[46] CERNIAUSKAS S, GRUBE T, PRAKTIKNJO A, et al. Future hydrogen markets for transportation and industry: the impact of CO2 taxes [J]. Energies, 2019, 12(24): 4707. DOI:  10.3390/en12244707.
[47] OBARA S, LI J R. Evaluation of the introduction of a hydrogen supply chain using a conventional gas pipeline–a case study of the Qinghai-Shanghai hydrogen supply chain [J]. International journal of hydrogen energy, 2020, 45(58): 33846-33859. DOI:  10.1016/j.ijhydene.2020.09.009.
[48] EDWARDS P P, KUZNETSOV V L, DAVID W I F, et al. Hydrogen and fuel cells: towards a sustainable energy future [J]. Energy policy, 2008, 36(12): 4356-4362. DOI:  10.1016/j.enpol.2008.09.036.
[49] AMOO L M, FAGBENLE R L. An integrated impact assessment of hydrogen as a future energy carrier in Nigeria’s transportation, energy and power sectors [J]. International journal of hydrogen energy, 2014, 39(24): 12409-12433. DOI:  10.1016/j.ijhydene.2014.06.022.
[50] WANG D, MURATORI M, EICHMAN J, et al. Quantifying the flexibility of hydrogen production systems to support large-scale renewable energy integration [J]. Journal of power sources, 2018, 399: 383-391. DOI:  10.1016/j.jpowsour.2018.07.101.
[51] RAZI F, DINCER I. Renewable energy development and hydrogen economy in MENA region: a review [J]. Renewable and sustainable energy reviews, 2022, 168: 112763. DOI:  10.1016/j.rser.2022.112763.
[52] REN J Z, ANDREASEN K P, SOVACOOL B K. Viability of hydrogen pathways that enhance energy security: a comparison of China and Denmark [J]. International journal of hydrogen energy, 2014, 39(28): 15320-15329. DOI:  10.1016/j.ijhydene.2014.07.150.
[53] AL-MUFACHI N A, SHAH N. The role of hydrogen and fuel cell technology in providing security for the UK energy system [J]. Energy policy, 2022, 171: 113286. DOI:  10.1016/j.enpol.2022.113286.
[54] CHERRY R. A hydrogen utopia? [J]. International journal of hydrogen energy, 2004, 29(2): 125-129. DOI:  10.1016/S0360-3199(03)00121-6.
[55] MCLELLAN B C. Potential opportunities and impacts of a hydrogen economy for the Australian minerals industry [J]. International journal of hydrogen energy, 2009, 34(9): 3571-3577. DOI:  10.1016/j.ijhydene.2009.03.008.
[56] TROMP T K, SHIA R L, ALLEN M, et al. Potential environmental impact of a hydrogen economy on the stratosphere [J]. Science, 2003, 300(5626): 1740-1742. DOI:  10.1126/science.1085169.
[57] VAN RUIJVEN B, LAMARQUE J F, VAN VUUREN D P, et al. Emission scenarios for a global hydrogen economy and the consequences for global air pollution [J]. Global environmental change, 2011, 21(3): 983-994. DOI:  10.1016/j.gloenvcha.2011.03.013.
[58] KIMURA S, KUTANI I, IKEDA O, et al. Demand and supply potential of hydrogen energy in East Asia - phase 2 [R]. Jakarta: Economic Research Institute for ASEAN and East Asia, 2020.
[59] KIMURA S, PURWANTO A J, KUTANI I, et al. Demand and supply potential of hydrogen energy in East Asia – phase 3 [R]. Jakarta: Economic Research Institute for ASEAN and East Asia, 2022.
[60] LI Y F, TAGHIZADEH-HESARY F. Hydrogen as energy storage for renewables in east Asia: economic competitiveness and policy implications [M]//TAGHIZADEH-HESARY F, ZHANG D Y. The Handbook of Energy Policy. Singapore: Springer, 2023: 609-641. DOI:  10.1007/978-981-19-6778-8_39.
[61] ASEAN Centre for Energy. Hydrogen in ASEAN – economic prospects, development, and applications [R]. Jakarta: ASEAN Centre for Energy, 2021.
[62] PHOUMIN H, KIMURA S, PURWANTO A J, et al. Energy outlook and energy saving potential in East Asia 2020 [R]. Jakarta: Economic Research Institute for ASEAN and East Asia, 2021.
[63] IRENA. Global renewables outlook: energy transformation 2050 [R]. Abu Dhabi: International Renewable Energy Agency, 2020.
[64] BHASKAR A, ASSADI M, NIKPEY SOMEHSARAEI H. Decarbonization of the iron and steel industry with direct reduction of iron ore with green hydrogen [J]. Energies, 2020, 13(3): 758. DOI:  10.3390/en13030758.
[65] LIU X Y, REDDI K, ELGOWAINY A, et al. Comparison of well-to-wheels energy use and emissions of a hydrogen fuel cell electric vehicle relative to a conventional gasoline-powered internal combustion engine vehicle [J]. International journal of hydrogen energy, 2020, 45(1): 972-983. DOI:  10.1016/j.ijhydene.2019.10.192.
[66] BHAT A, ORDÓÑEZ GARCIA J. Sustainability and EU road transport carbon emissions from consumption of diesel and gasoline in 2000 and 2018 [J]. Applied sciences, 2021, 11(16): 7601. DOI:  10.3390/app11167601.
[67] YAN X P, HE Y P, FAN A L. Carbon footprint prediction considering the evolution of alternative fuels and cargo: a case study of Yangtze River ships [J]. Renewable and sustainable energy reviews, 2023, 173: 113068. DOI:  10.1016/j.rser.2022.113068.
[68] RICKS W, XU Q Y, JENKINS J D. Minimizing emissions from grid-based hydrogen production in the United States [J]. Environmental research letters, 2023, 18(1): 014025. DOI:  10.1088/1748-9326/acacb5.
[69] LU G, YUAN B, GU Z F, et al. Techno-economic assessment of electrolytic hydrogen in China considering wind-solar-load characteristics [J]. Frontiers in energy research, 2023, 10: 1046140. DOI:  10.3389/fenrg.2022.1046140.
[70] SHARMA S, AGARWAL S, JAIN A. Significance of hydrogen as economic and environmentally friendly fuel [J]. Energies, 2021, 14(21): 7389. DOI:  10.3390/en14217389.
[71] DIMITRIOU P, KUMAR M, TSUJIMURA T, et al. Combustion and emission characteristics of a hydrogen-diesel dual-fuel engine [J]. International journal of hydrogen energy, 2018, 43(29): 13605-13617. DOI:  10.1016/j.ijhydene.2018.05.062.
[72] COLELLA W G, JACOBSON M Z, GOLDEN D M. Switching to a U. S. hydrogen fuel cell vehicle fleet: the resultant change in emissions, energy use, and greenhouse gases [J]. Journal of power sources, 2005, 150: 150-181. DOI:  10.1016/j.jpowsour.2005.05.092.
[73] NADALETI W C, BORGES DOS SANTOS G, LOURENÇO V A. The potential and economic viability of hydrogen production from the use of hydroelectric and wind farms surplus energy in Brazil: a national and pioneering analysis [J]. International journal of hydrogen energy, 2020, 45(3): 1373-1384. DOI:  10.1016/j.ijhydene.2019.08.199.
[74] BHANDARI R, TRUDEWIND C A, ZAPP P. Life cycle assessment of hydrogen production via electrolysis - a review [J]. Journal of cleaner production, 2014, 85: 151-163. DOI:  10.1016/j.jclepro.2013.07.048.
[75] ABE J O, POPOOLA A P I, AJENIFUJA E, et al. Hydrogen energy, economy and storage: review and recommendation [J]. International journal of hydrogen energy, 2019, 44(29): 15072-15086. DOI:  10.1016/j.ijhydene.2019.04.068.