[1] |
徐四川, 马惜钰, 周天皓, 等. 碳排放CO2温室效应机制 [J]. 云南大学学报(自然科学版), 2023, 45(2): 513-522. DOI: 10.7540/j.ynu.20220373.
XU S C, MA X Y, ZHOU T H, et al. The mechanism of greenhouse effect of carbon emission CO2 [J]. Journal of Yunnan university: natural sciences edition, 2023, 45(2): 513-522. DOI: 10.7540/j.ynu.20220373. |
[2] |
DEPREN S K, KARTAL M T, ÇELIKDEMIR N Ç, et al. Energy consumption and environmental degradation nexus: a systematic review and meta-analysis of fossil fuel and renewable energy consumption [J]. Ecological informatics, 2022, 70: 101747. DOI: 10.1016/j.ecoinf.2022.101747. |
[3] |
王灿, 张雅欣. 碳中和愿景的实现路径与政策体系 [J]. 中国环境管理, 2020, 12(6): 58-64. DOI: 10.16868/j.cnki.1674-6252.2020.06.058.
WANG C, ZHANG Y X. Implementation pathway and policy system of carbon neutrality vision [J]. Chinese journal of environmental management, 2020, 12(6): 58-64. DOI: 10.16868/j.cnki.1674-6252.2020.06.058. |
[4] |
中国人民银行. 人民银行推出碳减排支持工具 [EB/OL]. (2021-11-08) [2024-12-06]. http://www.pbc.gov.cn/goutongjiaoliu/113456/113469/4384182/index.html.
The People's Bank of China. The People's Bank of China launches carbon reduction support tool [EB/OL]. (2021-11-08) [2024-12-06]. http://www.pbc.gov.cn/goutongjiaoliu/113456/113469/4384182/index.html. |
[5] |
国家发展改革委, 科技部, 工业和信息化部, 等. 国家发展改革委等部门关于印发《绿色低碳先进技术示范工程实施方案》的通知 [EB/OL]. (2023-08-22) [2024-12-06]. https://www.ndrc.gov.cn/xwdt/tzgg/202308/t20230822_1359999.html.
National Development and Reform Commission, Ministry of Science and Technology of the People's Republic of China, Ministry of Industry and Information Technology of the People's Republic of China, et al. Notice of the National Development and Reform Commission and other departments on issuing the implementation plan of the green and low-carbon advanced technology demonstration project [EB/OL]. (2023-08-22) [2024-12-06]. https://www.ndrc.gov.cn/xwdt/tzgg/202308/t20230822_1359999.html. |
[6] |
The US Department of Energy. Secretary Granholm launches carbon negative Earthshots to remove gigatons of carbon pollution from the air by 2050 [EB/OL]. (2021-11-05) [2024-12-06]. https://www.energy.gov/articles/secretary-granholm-launches-carbon-negative-earthshots-remove-gigatons-carbon-pollution. |
[7] |
李亚平, 刘金昌, 黄卢洁, 等. 低浓度CO2的捕集技术及吸附法在碳捕集中的应用 [J]. 山东化工, 2022, 51(22): 155-159. DOI: 10.19319/j.cnki.issn.1008-021x.2022.22.027.
LI Y P, LIU J C, HUANG L J, et al. Low-concentration CO2 capture technology and application of adsorption in carbon capture [J]. Shandong chemical industry, 2022, 51(22): 155-159. DOI: 10.19319/j.cnki.issn.1008-021x.2022.22.027. |
[8] |
CORMOS A M, DRAGAN S, PETRESCU L, et al. Techno-economic and environmental evaluations of decarbonized fossil-intensive industrial processes by reactive absorption & adsorption CO2 capture systems [J]. Energies, 2020, 13(5): 1268. DOI: 10.3390/en13051268. |
[9] |
王璐. 沸石13XAPG吸附分离CO2-N2混合气过程研究及其应用 [D]. 上海: 华东理工大学, 2013.
WANG L. Investigation and application of CO2/N2 separation by adsorption process using zeolite 13XAPG [D]. Shanghai: East China University of Science and Technology, 2013. |
[10] |
姜鑫, 金文龙, 铁宇. 二氧化碳捕集技术发展现状 [J]. 煤气与热力, 2023, 43(6): 42-46. DOI: 10.13608/j.cnki.1000-4416.2023.06.006.
JIANG X, JIN W L, TIE Y. Development status of carbon dioxide capture technology [J]. Gas & heat, 2023, 43(6): 42-46. DOI: 10.13608/j.cnki.1000-4416.2023.06.006. |
[11] |
PERUMAL M, JAYARAMAN D, BALRAJ A. Experimental studies on CO2 absorption and solvent recovery in aqueous blends of monoethanolamine and tetrabutylammonium hydroxide [J]. Chemosphere, 2021, 276: 130159. DOI: 10.1016/j.chemosphere.2021.130159. |
[12] |
YAN H, ZHAO L, BAI Y G, et al. Superbase ionic liquid-based deep eutectic solvents for improving CO2 absorption [J]. ACS sustainable chemistry & engineering, 2020, 8(6): 2523-2530. DOI: 10.1021/acssuschemeng.9b07128. |
[13] |
ZHANG Y J, DONG J, NING P, et al. Investigation of CO2 capture performance of polyamine/organic alcohol ether non-aqueous absorbent regulated by ethylene glycol [J]. Journal of environmental chemical engineering, 2024, 12(5): 113694. DOI: 10.1016/j.jece.2024.113694. |
[14] |
THAMSIRIPRIDEEPORN C, TETSUYA S. Development of CO2 absorption using blended alkanolamine absorbents for multicycle integrated absorption–mineralization [J]. Minerals, 2023, 13(4): 487. DOI: 10.3390/min13040487. |
[15] |
MAO J M, LI C, YUN Y B, et al. Biphasic solvents based on dual-functionalized ionic liquid for enhanced post-combustion CO2 capture and corrosion inhibition during the absorption process [J]. Chemical engineering journal, 2024, 481: 148691. DOI: 10.1016/j.cej.2024.148691. |
[16] |
YUAN S J, CHEN Y F, JI X Y, et al. Experimental study of CO2 absorption in aqueous cholinium-based ionic liquids [J]. Fluid phase equilibria, 2017, 445: 14-24. DOI: 10.1016/j.fluid.2017.04.001. |
[17] |
赵毅, 沈艳梅, 倪世清, 等. 燃煤电厂CO2捕集分离技术研究现状及其展望 [J]. 热力发电, 2011, 40(6): 9-12, 28. DOI: 10.3969/j.issn.1002-3364.2011.06.009.
ZHAO Y, SHEN Y M, NI S Q, et al. Status quo of research in CO2 capture and separation technology for coal-fired power plants and prospects thereof [J]. Thermal power generation, 2011, 40(6): 9-12, 28. DOI: 10.3969/j.issn.1002-3364.2011.06.009. |
[18] |
KENARSARI S D, YANG D L, JANG G D, et al. Review of recent advances in carbon dioxide separation and capture [J]. RSC advances, 2013, 3(45): 22739-22773. DOI: 10.1039/c3ra43965h. |
[19] |
LI S L, DENG L X, WU G, et al. Preparation of a new metal-organic framework/porous anodic alumina composite membrane, structural characterization, and CO2 adsorption [J]. Russian journal of general chemistry, 2022, 92(8): 1574-1577. DOI: 10.1134/s1070363222080266. |
[20] |
AMIRKHANI F, HARAMI H R, ASGHARI M. CO2/CH4 mixed gas separation using poly (ether-b-amide)-ZnO nanocomposite membranes: experimental and molecular dynamics study [J]. Polymer testing, 2020, 86: 106464. DOI: 10.1016/j.polymertesting.2020.106464. |
[21] |
ZHANG X R, BAI X, WANG Y H, et al. Mixed matrix composite membranes based on Pebax and Nano-amorphous MIP-202 for CO2 separation [J]. Journal of membrane science, 2024, 692: 122290. DOI: 10.1016/j.memsci.2023.122290. |
[22] |
GEWEDA A E, ZAYED M E, KHAN M Y, et al. Mitigating CO2 emissions: a review on emerging technologies/strategies for CO2 capture [J]. Journal of the energy institute, 2025, 118: 101911. DOI: 10.1016/j.joei.2024.101911. |
[23] |
LEE Y Y, WICKRAMASINGHE N P, DIKKI R, et al. Facilitated transport membrane with functionalized ionic liquid carriers for CO2/N2, CO2/O2, and CO2/air separations [J]. Nanoscale, 2022, 14(35): 12638-12650. DOI: 10.1039/d2nr03214g. |
[24] |
KAMIO E, TANAKA M, SHIRONO Y, et al. Hollow fiber-type facilitated transport membrane composed of a polymerized ionic liquid-based gel layer with amino acidate as the CO2 carrier [J]. Industrial & engineering chemistry research, 2020, 59(5): 2083-2092. DOI: 10.1021/acs.iecr.9b05253. |
[25] |
BI Y J, JU Y L. Review on cryogenic technologies for CO2 removal from natural gas [J]. Frontiers in energy, 2022, 16(5): 793-811. DOI: 10.1007/s11708-022-0821-0. |
[26] |
ASGHARIAN H, IOV F, NIELSEN M P, et al. Analysis of cryogenic CO2 capture technology integrated with water-ammonia absorption refrigeration cycle for CO2 capture and separation in cement plants [J]. Separation and purification technology, 2025, 353: 128419. DOI: 10.1016/j.seppur.2024.128419. |
[27] |
BERSTAD D, SKAUGEN G, ROUSSANALY S, et al. CO2 capture from IGCC by low-temperature synthesis gas separation [J]. Energies, 2022, 15(2): 515. DOI: 10.3390/en15020515. |
[28] |
NANDAKISHORA Y, SAHOO R K, MURUGAN S, et al. 4E analysis of the cryogenic CO2 separation process integrated with waste heat recovery [J]. Energy, 2023, 278: 127922. DOI: 10.1016/j.energy.2023.127922. |
[29] |
李季. 活性碳纤维的制备及其吸附挥发性有机物和CO2的性能研究 [D]. 大连: 大连理工大学, 2020. DOI: 10.26991/d.cnki.gdllu.2020.003478.
LI J. Fabrication of activated carbon fibers and their performance on adsorption of volatile organic compounds and CO2 [D]. Dalian: Dalian University of Technology, 2020. DOI: 10.26991/d.cnki.gdllu.2020.003478. |
[30] |
NIKOLAIDIS G N, KIKKINIDES E S, GEORGIADIS M C. An integrated two-stage P/VSA process for postcombustion CO2 capture using combinations of adsorbents zeolite 13X and Mg-MOF-74 [J]. Industrial & engineering chemistry research, 2017, 56(4): 974-988. DOI: 10.1021/acs.iecr.6b04270. |
[31] |
SALAZAR DUARTE G, SCHÜRER B, VOSS C, et al. Adsorptive separation of CO2 from flue gas by temperature swing adsorption processes [J]. ChemBioEng reviews, 2017, 4(5): 277-288. DOI: 10.1002/cben.201600029. |
[32] |
LI J X, LI Y, LI C, et al. CO2 absorption and microwave regeneration with high-concentration TETA nonaqueous absorbents [J]. Greenhouse gases: science and technology, 2022, 12(3): 362-375. DOI: 10.1002/ghg.2148. |
[33] |
MELONI E, MARTINO M, PULLUMBI P, et al. Intensification of TSA processes using a microwave-assisted regeneration step [J]. Chemical engineering and processing-process intensification, 2021, 160: 108291. DOI: 10.1016/j.cep.2020.108291. |
[34] |
王胜岩, 邓帅, 赵睿恺. 变电吸附二氧化碳捕集技术研究进展 [J]. 化工进展, 2023, 42(增刊1): 233-245. DOI: 10.16085/j.issn.1000-6613.2023-1040.
WANG S Y, DENG S, ZHAO R K. Research progress on carbon dioxide capture technology based on electric swing adsorption [J]. Chemical industry and engineering progress, 2023, 42(Suppl.1): 233-245. DOI: 10.16085/j.issn.1000-6613.2023-1040. |
[35] |
RIBEIRO R P P L, GRANDE C A, RODRIGUES A E. Electric swing adsorption for gas separation and purification: a review [J]. Separation science and technology, 2014, 49(13): 1985-2002. DOI: 10.1080/01496395.2014.915854. |
[36] |
VEROUGSTRAETE B, SCHOUKENS M, SUTENS B, et al. Electrical swing adsorption on 3D-printed activated carbon monoliths for CO2 capture from biogas [J]. Separation and purification technology, 2022, 299: 121660. DOI: 10.1016/j.seppur.2022.121660. |
[37] |
ZHAO Q H, WU F, XIE K, et al. Synthesis of a novel hybrid adsorbent which combines activated carbon and zeolite NaUSY for CO2 capture by electric swing adsorption (ESA) [J]. Chemical engineering journal, 2018, 336: 659-668. DOI: 10.1016/j.cej.2017.11.167. |
[38] |
CHEN L J, DENG S, ZHAO R K, et al. Temperature swing adsorption for CO2 capture: thermal design and management on adsorption bed with single-tube/three-tube internal heat exchanger [J]. Applied thermal engineering, 2021, 199: 117538. DOI: 10.1016/j.applthermaleng.2021.117538. |
[39] |
MASUDA S, OSAKA Y, TSUJIGUCHI T, et al. High-purity CO2 recovery following two-stage temperature swing adsorption using an internally heated and cooled adsorber [J]. Separation and purification technology, 2023, 309: 123062. DOI: 10.1016/j.seppur.2022.123062. |
[40] |
刘强, 肖金, 于航, 等. 变压吸附捕集CO2技术研究进展及其在石化行业应用案例分析 [J]. 南方能源建设, 2024, 11(5): 37-49. DOI: 10.16516/j.ceec.2024.5.04.
LIU Q, XIAO J, YU H, et al. Research progress of pressure swing adsorption CO2 capture technology and case analysis of its application in petrochemical industry [J]. Southern energy construction, 2024, 11(5): 37-49. DOI: 10.16516/j.ceec.2024.5.04. |
[41] |
PAZ L, GENTIL S, FIERRO V, et al. Assessing the performance of adsorbents for CO2/CH4 separation in pressure swing adsorption units: a review [J]. Journal of environmental chemical engineering, 2024, 12(6): 114870. DOI: 10.1016/j.jece.2024.114870. |
[42] |
ALIBOLANDI M, SADRAMELI S M, REZAEE F, et al. Separation of CO2/N2 mixture by vacuum pressure swing adsorption (VPSA) using zeolite 13X type and carbon molecular sieve adsorbents [J]. Heat and mass transfer, 2020, 56(6): 1985-1994. DOI: 10.1007/s00231-020-02823-y. |
[43] |
JIANG N, SHEN Y H, LIU B, et al. CO2 capture from dry flue gas by means of VPSA, TSA and TVSA [J]. Journal of CO2 utilization, 2020, 35: 153-168. DOI: 10.1016/j.jcou.2019.09.012. |
[44] |
GUAN Z B, WANG Y Y, YU X X, et al. Simulation and analysis of dual-reflux pressure swing adsorption using silica gel for blue coal gas initial separation [J]. International journal of hydrogen energy, 2021, 46(1): 683-696. DOI: 10.1016/j.ijhydene.2020.09.209. |
[45] |
SHEN Y H, ZHOU Y, LI D D, et al. Dual-reflux pressure swing adsorption process for carbon dioxide capture from dry flue gas [J]. International journal of greenhouse gas control, 2017, 65: 55-64. DOI: 10.1016/j.ijggc.2017.08.020. |
[46] |
WAWRZYŃCZAK D, MAJCHRZAK- KUCĘBA I, SROKOSZ K, et al. The pilot dual-reflux vacuum pressure swing adsorption unit for CO2 capture from flue gas [J]. Separation and purification technology, 2019, 209: 560-570. DOI: 10.1016/j.seppur.2018.07.079. |
[47] |
REN T S, LIU L Y, YANG J, et al. Exploring enhanced CO2 separation from blast furnace gas: a multicolumn vacuum swing adsorption approach with process design and experimental assessment [J]. Separation and purification technology, 2025, 354: 129300. DOI: 10.1016/j.seppur.2024.129300. |
[48] |
CAPOCELLI M, LUBERTI M, INNO S, et al. Post-combustion CO2 capture by RVPSA in a large-scale steam reforming plant [J]. Journal of CO2 utilization, 2019, 32: 53-65. DOI: 10.1016/j.jcou.2019.02.012. |
[49] |
ZHAO R K, ZHAO L, DENG S, et al. A comparative study on CO2 capture performance of vacuum-pressure swing adsorption and pressure-temperature swing adsorption based on carbon pump cycle [J]. Energy, 2017, 137: 495-509. DOI: 10.1016/j.energy.2017.01.158. |
[50] |
梁辉, 刘振, 王璐, 等. 13X-APG沸石真空变压变温耦合工艺吸附捕集烟道气中CO2 [J]. 过程工程学报, 2010, 10(2): 249-255.
LIANG H, LIU Z, WANG L, et al. Capture of CO2 from flue gases by a combined process of vacuum and temperature swing adsorption using 13X-APG zeolite [J]. The Chinese journal of process engineering, 2010, 10(2): 249-255. |
[51] |
SONG C F, KANSHA Y, FU Q, et al. Reducing energy consumption of advanced PTSA CO2 capture process-experimental and numerical study [J]. Journal of the Taiwan institute of chemical engineers, 2016, 64: 69-78. DOI: 10.1016/j.jtice.2015.12.006. |
[52] |
ZHAO R K, ZHAO L, WANG S P, et al. Solar-assisted pressure-temperature swing adsorption for CO2 capture: effect of adsorbent materials [J]. Solar energy materials and solar cells, 2018, 185: 494-504. DOI: 10.1016/j.solmat.2018.06.004. |
[53] |
ZHU X C, GE T S, YANG F, et al. Design of steam-assisted temperature vacuum-swing adsorption processes for efficient CO2 capture from ambient air [J]. Renewable and sustainable energy reviews, 2021, 137: 110651. DOI: 10.1016/j.rser.2020.110651. |