高级检索

偶极场位形的正电子约束特性

Positron Confinement Characteristics of Dipole Field Configuration

  • 摘要:
    目的 文章旨在揭示正电子在悬浮偶极磁场中的约束特性和损耗机理,提出一种基于旋转电极技术的优化方法,以实现长期稳定的正电子约束。
    方法 采用测试粒子模拟分析了正电子在悬浮偶极子磁场中的轨迹和损耗机理。在真空室周围布置8个圆弧电极,通过动态调整相邻或非相邻电极的相位差与电势旋转频率产生环向旋转的电场,驱动正电子产生沿径向向内的跨场输运。
    结果 该方法使得正电子输运到靠近偶极场线圈的强磁场侧,避免正电子与入射窗碰撞损失从而显著提高粒子约束时间。
    结论 旋转电极技术通过调控 \boldsymbolE\times \boldsymbolB 漂移,能显著改善正电子的约束性能,为反物质离子的无损耗输运与长时间约束提供了创新解决方案。该方法可拓展至电子-正电子等离子体约束研究,对于提高反物质约束时间具有启发性的意义。

     

    Abstract:
    Objective This paper aims to reveal the confinement characteristics and loss mechanisms of positrons in a suspended dipole magnetic field, present an optimized method based on rotating electrode technology to achieve long-term and stable positron confinement.
    Method Test particle simulation was used to analyze the trajectory and loss mechanisms of positrons in a suspended dipole magnetic field. The rotating electrode technology was introduced by arranging eight arc-shaped electrodes around the vacuum chamber. A controllable toroidal electric field was generated by dynamically adjusting the phase difference between adjacent or nonadjacent electrodes and the electrode rotation frequency, driving positrons to undergo E×B drift inward.
    Result The method allows the positron drift toward the strong magnetic field region, reducing collisions with the incident window structure, thereby significantly improving the positron confinement time.
    Conclusion Rotating electrode technology enhances positron confinement by tuning the E×B drift, offering a new approach for efficient antimatter ion transport and long-term confinement. This method is applicable to electron-positron plasma confinement studies, which is of enlightening significance for improving the confinement time of antimatter.

     

/

返回文章
返回