• 匿名盲审
  • 学术期刊非营利性
  • 全球免费开放获取全文
  • 最新科研成果提供绿色通道

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

风电机组基础缺陷检测手段分析研究

皮军武 吴强 马俊

皮军武,吴强,马俊. 风电机组基础缺陷检测手段分析研究[J]. 南方能源建设,2024,11(增刊1):23-28. doi:  10.16516/j.ceec.2024.S1.05
引用本文: 皮军武,吴强,马俊. 风电机组基础缺陷检测手段分析研究[J]. 南方能源建设,2024,11(增刊1):23-28. doi:  10.16516/j.ceec.2024.S1.05
PI Junwu, WU Qiang, MA Jun. Analysis and research on detection methods of WTGS foundation defects [J]. Southern energy construction, 2024, 11(Suppl. 1): 23-28. DOI: 10.16516/j.ceec.2024.S1.05 doi:  10.16516/j.ceec.2024.S1.05
Citation: PI Junwu, WU Qiang, MA Jun. Analysis and research on detection methods of WTGS foundation defects [J]. Southern energy construction, 2024, 11(Suppl. 1): 23-28. DOI: 10.16516/j.ceec.2024.S1.05 doi:  10.16516/j.ceec.2024.S1.05

风电机组基础缺陷检测手段分析研究

DOI: 10.16516/j.ceec.2024.S1.05
CSTR: 32391.14.j.ceec.2024.S1.05
基金项目: 湖南三一智慧新能源设计有限公司企业科技项目“风机基础质量检测加固技术研发项目”(2013070)
详细信息
    作者简介:

    皮军武,男,工程师,一级注册结构工程师,四川大学土木工程学士,主要从事新能源行业结构设计与研究工作(e-mail)876134334@qq.com

    通讯作者:

    皮军武,男,汉族,工程师,一级注册结构工程师,四川大学土木工程学士,主要从事新能源行业结构设计与研究工作(e-mail)876134334@qq.com

  • 中图分类号: TK89;TB551;P631

Analysis and Research on Detection Methods of WTGS Foundation Defects

  • 摘要:   目的  随着我国陆上风机装机规模越来越大,风电机组基础质量缺陷问题屡见不鲜,直接影响到机组安全运行与设备安全。风电机组基础具有体积大、构造复杂等特点,常规检测手段在大尺寸、钢筋密集情况下适用性还需对比分析,研究风电机组缺陷检测手段具有重大的实际工程意义。  方法  以某风电加固项目为对象,采用地质雷达法、超声横波法、钻孔检测法,根据各种检测手段的检测原理及成果,分析了各检测手段的适用性和检测精度。  结果  分析结果显示:地质雷达法随着发射频率越高,缺陷定位精度越高,有效检测深度越低;超声横波法仅适用于混凝土浅层检测,检测精度较高;钻孔检测法具有极好的可视性,结果直观、准确。  结论  在风电机组基础缺陷检测中,地质雷达法、超声横波法适用于浅层混凝土缺陷检测,使用高频率波谱检测可获得较好的检测精度;钻孔检测法可用于混凝土基础浅层和深层缺陷检测,检测效果直观。
  • 图  1  地质雷达探测原理

    Fig.  1  Principles of geological radar detection

    图  2  菲涅尔(Fresnel)带示意图

    Fig.  2  Schematic diagram of Fresnel strip

    图  3  地质雷达现场检测

    Fig.  3  Geological radar on-site detection

    图  4  地质雷达和超声横波成像测线布置图

    Fig.  4  Layout of geological radar and ultrasonic transverse wave imaging survey lines

    图  5  C12机位L1、L2测线检测图像

    Fig.  5  Detection images of L1,L2 survey lines at C12 position

    图  6  C12机位L1、L2测线检测图像

    Fig.  6  Detection images of L1,L2 survey lines at C12 position

    图  7  C12 机位1号&8号孔位孔底影像

    Fig.  7  Bottom image of hole No.1 & No.8 at C12 position

    表  1  地质雷达探测深度与精度

    Tab.  1.   Geological radar detection depth and accuracy

    中心频率/MHz 波速/(cm·ns−1) 波长/cm 纵向分辨率/cm 穿透深度/cm
    100 12.0 120.0 30.0 400.0
    200 12.0 60.0 15.0 250.0
    250 12.0 48.0 12.0 150.0
    400 12.0 30.0 7.5 100.0
    500 12.0 24.0 6.0 100.0
    900 12.0 13.3 3.3 40.0
    1 000 12.0 12.0 3.0 30.0
    1 500 12.0 8.0 2.0 20.0
    2 000 12.0 6.0 1.5 15.0
    下载: 导出CSV

    表  2  超声横波检测方法

    Tab.  2.   Ultrasonic transverse wave detection method

    编号 检测方法 适用条件
    1 对测法 一般用于梁、柱等长条形构件检测。
    2 角测法 一般用于仅两个直角边可供检测的构件。
    3 平测法 一般用于仅一个表面可供检测的构件,如隧道
    衬砌、筏板等。
    下载: 导出CSV

    表  3  超声波检测仪参数

    Tab.  3.   Ultrasonic detector parameters

    设备型号A1040 MIRA 3D 混凝土三维超声波成像仪HC-U91 混凝土超声波检测仪
    检测方法平测法对测法
    超声波频率/ kHz10~10010~10 000
    被测混凝土最大
    深度/ mm
    1 000~1 500500
    缺陷深度测量
    范围/ mm
    50~1 5005~500
    下载: 导出CSV
  • [1] 汪宏伟. 采用环梁加固风机基础的有限元分析 [J]. 可再生能源, 2016, 34(4): 558-562. DOI:  10.13941/j.cnki.21-1469/tk.2016.04.014.

    WANG H W. Finite element analysis of the wind turbine foundation reinforced with ring beam [J]. Renewable energy resources, 2016, 34(4): 558-562. DOI:  10.13941/j.cnki.21-1469/tk.2016.04.014.
    [2] 黄昊, 张秋生. 风电机组混凝土基础结构检测评估和修复加固 [M]. 北京: 中国水利水电出版社, 2021.

    HUANG H, ZHANG Q S. Detection evaluation and restoration for concrete foundation of wind turbine [M]. Beijing: China Water & Power Press, 2021.
    [3] 黄冬平. 风力发电塔基础环基础超声波法质量检测 [J]. 建筑结构, 2016, 46(14): 8-11. DOI:  10.19701/j.jzjg.2016.14.002.

    HUANG D P. Quality detection for embedded-ring foundation of wind turbine tower using ultrasonic method [J]. Building structure, 2016, 46(14): 8-11. DOI:  10.19701/j.jzjg.2016.14.002.
    [4] 郭秀芹, 杨森, 张远军. 弹性波CT技术在大体积混凝土结构无损检测中的应用 [J]. 四川理工学院学报(自然科学版), 2017, 30(4): 58-63. DOI:  10.11863/j.suse.2017.04.11.

    GUO X Q, YANG S, ZHANG Y J. Elastic wave CT technology in mass concrete structure application of nondestructive testing [J]. Journal of Sichuan University of Science & Engineering (natural science edition), 2017, 30(4): 58-63. DOI:  10.11863/j.suse.2017.04.11.
    [5] 王忠辉. 浅谈风机基础混凝土无损检测技术的应用 [J]. 水力发电, 2020, 46(12): 109-111,128. DOI:  10.3969/j.issn.0559-9342.2020.12.024.

    WANG Z H. Application of non-destructive testing technology in wind turbine concrete foundation [J]. Water power, 2020, 46(12): 109-111,128. DOI:  10.3969/j.issn.0559-9342.2020.12.024.
    [6] 朱金彪. 探地雷达在地下空洞探测中的应用 [J]. 黑龙江水利科技, 2014, 42(7): 229-230. DOI:  10.14122/j.cnki.hskj.2014.07.222.

    ZHU J B. The application of ground penetrating radar in underground cavity detection [J]. Heilongjiang science and technology of water conservancy, 2014, 42(7): 229-230. DOI:  10.14122/j.cnki.hskj.2014.07.222.
    [7] 中华人民共和国住房和城乡建设部. 雷达法检测混凝土结构技术标准: JGJ/T 456—2019 [S]. 北京: 中国建筑工业出版社, 2019.

    Ministry of Housing and Urban-Rural Development of the People's Republic of China. Technical standard for testing of concrete structures by radar method: JGJ/T 456—2019 [S]. Beijing: China Architecture & Building Press, 2019.
    [8] 刘志生. 地铁施工区段地下空洞探测及病害处理研究 [J]. 施工技术, 2019, 48(13): 104-107. DOI: 10.7672/sgjs201913 0104.

    LIU Z S. Research on underground cavity detection and disease treatment in subway construction section [J]. Construction technology, 2019, 48(13): 104-107. DOI: 10.7672/sgjs201913 0104.
    [9] 殷慧茹, 熊绍鑫. 地质雷达物探技术应用在高速公路建设中的意义 [J]. 科技资讯, 2022, 20(19): 93-96. DOI:  10.16661/j.cnki.1672-3791.2204-5042-1899.

    YIN H R, XIONG S X. Significance of application of GPR geophysical prospecting technology in expressway construction [J]. Science & technology information, 2022, 20(19): 93-96. DOI:  10.16661/j.cnki.1672-3791.2204-5042-1899.
    [10] 许德根, 杨天春, 程辉, 等. 隧道衬砌探地雷达检测数值解析及应用 [J]. 隧道建设, 2016, 36(11): 1343-1347. DOI:  10.3973/j.issn.1672-741X.2016.11.009.

    XU D G, YANG T C, CHENG H, et al. Numerical simulation of ground penetrating radar detection for tunnel lining and its application [J]. Tunnel construction, 2016, 36(11): 1343-1347. DOI:  10.3973/j.issn.1672-741X.2016.11.009.
    [11] 李清华. 地质雷达在铁路隧道工程钢筋钢架检测中的应用 [J]. 福建地质, 2012, 31(2): 191-195. DOI:  10.3969/j.issn.1001-3970.2012.02.013.

    LI Q H. Application of the ground penetrating radar on the steel reinforcement and frame detection of a railway tunnel project [J]. Geology of Fujian, 2012, 31(2): 191-195. DOI:  10.3969/j.issn.1001-3970.2012.02.013.
    [12] 韩景阳. 地质雷达在隧道衬砌质量检测中的应用 [J]. 江苏建筑, 2022(增刊1): 49-51. DOI:  10.3969/j.issn.1005-6270.2022.z1.012.

    HAN J Y. Application of ground penetrating radar in the quality detection of a tunnel lining [J]. Jiangsu construction, 2022(Suppl.1): 49-51. DOI:  10.3969/j.issn.1005-6270.2022.z1.012.
    [13] 陈伟. 隧道衬砌缺陷的探地雷达精确识别研究 [D]. 苏州: 苏州科技大学, 2020. DOI:  10.27748/d.cnki.gszkj.2020.000035.

    CHEN W. Research on ground penetrating radar accurate identification of tunnel lining defects [D]. Suzhou: Suzhou University of Science and Technology, 2020. DOI:  10.27748/d.cnki.gszkj.2020.000035.
    [14] 董茂干. 探地雷达在公路检测中的几个技术问题的研究 [D]. 石家庄: 河北地质大学, 2008.

    DONG M G. Research several technology problem on applying ground penetration radar for pavement detection [D]. Shijiazhuang: Hebei GEO University, 2008.
    [15] 赵柳. 基于探地雷达的道路地下空洞探测及识别技术研究 [D]. 成都: 西华大学, 2020.

    ZHAO L. Study on detection and recognition technology of road underground cavity based on GPR [D]. Chengdu: Xihua University, 2020.
    [16] 吴晓娜. 探地雷达在路面脱空缺陷检测中的应用 [J]. 公路交通技术, 2011, 27(1): 33-36. DOI:  10.3969/j.issn.1009-6477.2011.01.009.

    WU X N. Application of ground penetrating radar in detection for cavity defects of pavement [J]. Technology of highway and transport, 2011, 27(1): 33-36. DOI:  10.3969/j.issn.1009-6477.2011.01.009.
    [17] 杨刚, 韦斯, 张威. 超声横波成像技术在桥梁混凝土检测中的应用 [J]. 水利规划与设计, 2022(5): 122-125. DOI:  10.3969/j.issn.1672-2469.2022.05.026.

    YANG G, WEI S, ZHANG W. Application of ultrasonic shear wave imaging technology in concrete detection of bridge [J]. Water resources planning and design, 2022(5): 122-125. DOI:  10.3969/j.issn.1672-2469.2022.05.026.
    [18] 王根艳, 刘元志, 易贤仁. 某工业厂房排架柱承载力可靠性鉴定 [J]. 国外建材科技, 2007, 28(1): 85-87.

    WANG G Y, LIU Y Z, YI X R. Reliability evaluation of the bearing capacity of a certain industrial factory building's truss column [J]. The world of building materials, 2007, 28(1): 85-87.
    [19] 中国工程建设标准化协会. 超声法检测混凝土缺陷技术规程: CECS 21—2000 [S]. 北京: 中国城市出版社, 2001.

    China Association for Engineering Construction Standardization. Technical specification for inspection of concrete defects by ultrasonic method: CECS 21—2000 [S]. Beijing: China City Press, 2001.
    [20] 赵炜, 何芳, 谢云春. 风机基础预应力锚栓张拉失效原因分析及处理方案 [J]. 云南水力发电, 2020, 36(5): 74-78. DOI:  10.3969/j.issn.1006-3951.2020.05.016.

    ZHAO W, HE F, XIE Y C. Failure analysis and treatment scheme of prestressed anchor bolt tension of fan foundation [J]. Yunnan water power, 2020, 36(5): 74-78. DOI:  10.3969/j.issn.1006-3951.2020.05.016.
  • [1] 姜家宏, 苏锋杰, 金晓明, 师英杰, 徐科.  基于电磁超声的核电管道壁腐蚀检测 . 南方能源建设, 2025, 12(4): 1-7. doi: 10.16516/j.ceec.2024-169
    [2] 王耀武, 郑康胜, 张吉海, 朱挺进, 李大超, 罗必雄, 范永春, 赵大文, 池元清, 刘东华, 张永康.  海上风机单桩基础沉桩施工工艺与应用 . 南方能源建设, 2024, 11(4): 180-189. doi: 10.16516/j.ceec.2024.4.19
    [3] 刘森林, 周光炳, 王晓, 严晓.  高位布置H级燃机基础多点位移SRSS法可靠概率研究 . 南方能源建设, 2022, 9(4): 159-166. doi: 10.16516/j.gedi.issn2095-8676.2022.04.020
    [4] 刘晋超.  海上大直径单桩基础沉桩施工关键技术研究 . 南方能源建设, 2022, 9(1): 47-51. doi: 10.16516/j.gedi.issn2095-8676.2022.01.007
    [5] 郑阳.  圆形扩展式风机基础钢筋设计优化分析 . 南方能源建设, 2022, 9(S1): 76-82. doi: 10.16516/j.gedi.issn2095-8676.2022.S1.012
    [6] 黄华, 谢静媛, 汪正玲, 申葳, 张伟鹏.  基于时频分析法的开关柜避雷器泄漏电流检测 . 南方能源建设, 2022, 9(4): 150-158. doi: 10.16516/j.gedi.issn2095-8676.2022.04.019
    [7] 李鲁, 林敬华.  海上风电支撑结构等效疲劳荷载法存在的问题 . 南方能源建设, 2020, 7(S1): 88-92. doi: 10.16516/j.gedi.issn2095-8676.2020.S1.017
    [8] 王延杰, 徐国智.  基于IAHP法的线损管理评价体系及验证 . 南方能源建设, 2020, 7(S2): 25-32. doi: 10.16516/j.gedi.issn2095-8676.2020.S2.004
    [9] 王丙乾, 董剑敏, 关前锋, 韩倩.  基于灰色关联TOPSIS法的抽水蓄能电站风险评价体系研究 . 南方能源建设, 2020, 7(S2): 56-61. doi: 10.16516/j.gedi.issn2095-8676.2020.S2.009
    [10] 肖颍涛, 王化全, 俞海峰, 胡晓侠, 柴贤东.  基于主成分分析法和模糊综合评价法的配电网评估 . 南方能源建设, 2019, 6(3): 105-112. doi: 10.16516/j.gedi.issn2095-8676.2019.03.018
    [11] 王延杰, 徐国智.  基于层次分析法的区域电能替代技术选择研究 . 南方能源建设, 2018, 5(4): 44-49. doi: 10.16516/j.gedi.issn2095-8676.2018.04.006
    [12] 彭明祥.  滑移线法求解挡土墙主动土压力 . 南方能源建设, 2018, 5(1): 1-13. doi: 10.16516/j.gedi.issn2095-8676.2018.01.001
    [13] 岑贞锦, 蒋道宇, 张维佳, 蔡驰.  海底电缆检测技术方法选择分析 . 南方能源建设, 2017, 4(3): 85-91,96. doi: 10.16516/j.gedi.issn2095-8676.2017.03.016
    [14] 姚宇, 黄德权.  气压劈裂真空法加固软土地基设计方法及工程应用 . 南方能源建设, 2017, 4(2): 141-146. doi: 10.16516/j.gedi.issn2095-8676.2017.02.026
    [15] 刘东华, 元国凯, 陈涛, 王衔.  海上风电灌浆连接段疲劳机理研究综述 . 南方能源建设, 2016, 3(S1): 68-72. doi: 10.16516/j.gedi.issn2095-8676.2016.S1.015
    [16] 刘晓敏, 刘志辉, 石喆.  基于熵权法的广东省核电节能减排效果综合评价研究 . 南方能源建设, 2016, 3(3): 31-35. doi: 10.16516/j.gedi.issn2095-8676.2016.03.006
    [17] 王谦, 娄宗斌, 吴铭.  高压注浆法在提高地基剪切波速中的应用 . 南方能源建设, 2016, 3(3): 108-111. doi: 10.16516/j.gedi.issn2095-8676.2016.03.023
    [18] 翟永杰, 张木柳, 乔弘, 王迪.  基于显著性检测的风机叶片裂纹提取研究 . 南方能源建设, 2016, 3(2): 136-140. doi: 10.16516/j.gedi.issn2095-8676.2016.02.027
    [19] 陈章隆.  基于Hermite插值法的板型燃料不对称冷却计算 . 南方能源建设, 2015, 2(4): 132-137. doi: 10.16516/j.gedi.issn2095-8676.2015.04.024
    [20] 何小华, 张力.  海上风机基础阴极保护设计与应用 . 南方能源建设, 2015, 2(3): 76-79. doi: 10.16516/j.gedi.issn2095-8676.2015.03.015
  • 加载中
图(7) / 表 (3)
计量
  • 文章访问数:  325
  • HTML全文浏览量:  122
  • PDF下载量:  11
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-03-15
  • 修回日期:  2024-04-25
  • 刊出日期:  2024-06-30

风电机组基础缺陷检测手段分析研究

DOI: 10.16516/j.ceec.2024.S1.05
CSTR: 32391.14.j.ceec.2024.S1.05
    基金项目:  湖南三一智慧新能源设计有限公司企业科技项目“风机基础质量检测加固技术研发项目”(2013070)
    作者简介:

    皮军武,男,工程师,一级注册结构工程师,四川大学土木工程学士,主要从事新能源行业结构设计与研究工作(e-mail)876134334@qq.com

    通讯作者: 皮军武,男,汉族,工程师,一级注册结构工程师,四川大学土木工程学士,主要从事新能源行业结构设计与研究工作(e-mail)876134334@qq.com
  • 中图分类号: TK89;TB551;P631

摘要:   目的  随着我国陆上风机装机规模越来越大,风电机组基础质量缺陷问题屡见不鲜,直接影响到机组安全运行与设备安全。风电机组基础具有体积大、构造复杂等特点,常规检测手段在大尺寸、钢筋密集情况下适用性还需对比分析,研究风电机组缺陷检测手段具有重大的实际工程意义。  方法  以某风电加固项目为对象,采用地质雷达法、超声横波法、钻孔检测法,根据各种检测手段的检测原理及成果,分析了各检测手段的适用性和检测精度。  结果  分析结果显示:地质雷达法随着发射频率越高,缺陷定位精度越高,有效检测深度越低;超声横波法仅适用于混凝土浅层检测,检测精度较高;钻孔检测法具有极好的可视性,结果直观、准确。  结论  在风电机组基础缺陷检测中,地质雷达法、超声横波法适用于浅层混凝土缺陷检测,使用高频率波谱检测可获得较好的检测精度;钻孔检测法可用于混凝土基础浅层和深层缺陷检测,检测效果直观。

English Abstract

皮军武,吴强,马俊. 风电机组基础缺陷检测手段分析研究[J]. 南方能源建设,2024,11(增刊1):23-28. doi:  10.16516/j.ceec.2024.S1.05
引用本文: 皮军武,吴强,马俊. 风电机组基础缺陷检测手段分析研究[J]. 南方能源建设,2024,11(增刊1):23-28. doi:  10.16516/j.ceec.2024.S1.05
PI Junwu, WU Qiang, MA Jun. Analysis and research on detection methods of WTGS foundation defects [J]. Southern energy construction, 2024, 11(Suppl. 1): 23-28. DOI: 10.16516/j.ceec.2024.S1.05 doi:  10.16516/j.ceec.2024.S1.05
Citation: PI Junwu, WU Qiang, MA Jun. Analysis and research on detection methods of WTGS foundation defects [J]. Southern energy construction, 2024, 11(Suppl. 1): 23-28. DOI: 10.16516/j.ceec.2024.S1.05 doi:  10.16516/j.ceec.2024.S1.05
    • 我国风电行业起步晚,但发展迅猛。在我国风电行业发展初期,由于风电机组基础设计、施工经验不足,导致早期风电工程建造质量不高,部分风电机组基础已经出现质量问题,如基础环脱开、基础环侧面混凝土挤压破坏[1]、预应力锚栓张拉异常等[2]。风电机组基础质量问题轻则导致风电机组停运,重则影响风电机组运行安全。

      风电机组基础属于大体积混凝土,具有体量大、构造复杂、钢筋密集等特点。针对风电机组基础内部缺陷,众多科研工作者提出了风机基础缺陷检测方案。如黄东平[3]在“风力发电塔基础环基础超声波法质量检测”文中介绍了超声波法在基础环式风机基础中的检测应用,郭秀芹等[4]在“弹性波CT技术在大体积混凝土结构无损检测中的应用”文中介绍了弹性波CT技术在大体积混凝土中的检测原理及应用,王忠辉[5]在“浅谈风机基础混凝土无损检测技术的应用”文中介绍了探地雷达在风机基础缺陷检测中的应用,然而对于各种检测方案的适用性未有深入研究和分析。文章以某预应力锚栓式风机基础加固项目为研究对象,选用地质雷达法、超声横波法、钻孔检测法对基础缺陷进行检测和分析,研究各种方法的检测原理和检测适用性,供广大从业人员参考。

    • 地质雷达(Ground Penetrating Radar,简称GPR)是一种用于确定地下介质分布的广谱电磁波技术。其工作原理为:高频电磁波通过发射天线(T)向检测对象发射,当它遇到地下地质体或介质分界面时发生反射,被接收天线(R)接收,通过记录电磁波的传播时间、电磁场强度、波形等信息,形成雷达剖面图[6-8] ,如图1所示。

      图  1  地质雷达探测原理

      Figure 1.  Principles of geological radar detection

      通过分析接收到的电磁波的速度、波形信息,就可以探测风机混凝土是否存在一定规模的空洞和不密实区域[9]

    • 地质雷达探测时,应根据检测需要布置测线,地质雷达沿测线同步移动,测试时将发射和接收器对称布置在测线两侧,电磁波在混凝土中的传播速度为v,发射器和接收器的水平间距为x,根据电磁传播物理关系,可求得电磁波传播时间t与反射体的位置深度z关系如下式所示[10-12]

      $$ z=\sqrt{({{v}}^{2}{{t}}^{2}-{{x}}^{2})/4} $$ (1)

      以地质雷达位置为水平轴,反射体深度为竖直轴,各点位置以波幅、波形等形态表示,形成测线地质雷达图像,通过判断介质各点的波状态,从而可以判断出混凝土的密实性。

    • 1)分辨率

      按波的干涉理论,物体上下界面反射波最小可识别双向波程差为λ/4 ~ λ/8,实际应用中一般采用λ/4波长为尺度来表明纵向分辨率[13-14]

      由波的波动理论,当入射波前到达界面上形成反射波时,是以“反射点”为中心点的1个面反射的综合,它们是以干涉形式形成能量累加或相减的带状分布的。将围绕反射点能量累加的这一圈反射干涉带称为菲涅尔(Fresnel)带[15],如图2所示。

      图  2  菲涅尔(Fresnel)带示意图

      Figure 2.  Schematic diagram of Fresnel strip

      A.J.Berkout认为,反映界面特性的重要变化可以集中在反射时间增长1/8波长的范围内,即水平分辨率可按下式估算[16]

      $$ \Delta l={[{(z+\lambda /8)}^{2}-{z}^{2}]}^{1/2}=({\lambda }^{2}/64+\lambda z/4{)}^{1/2}\approx (\lambda z/4{)}^{1/2} $$ (2)

      式中:

      λ ——电磁波长;

      z ——柱体顶面埋深。

      从以上分析可以看出,纵向分辨率与电磁波波长有关,水平分辨率与埋深和波长有关,而波长则是由电磁波频率和在介质中电磁波传播速度共同决定。

      2)探测深度

      电磁波这种高频、宽频信号在介质中的传播是一种由损耗的传播过程。这种能量损耗除了与导电介质的电磁性质相关外,还与电磁波的频率有密切关系。高频信号信息损失多,低频信号损失少。

      雷达探测深度和精度参考值如表1所示。

      表 1  地质雷达探测深度与精度

      Table 1.  Geological radar detection depth and accuracy

      中心频率/MHz 波速/(cm·ns−1) 波长/cm 纵向分辨率/cm 穿透深度/cm
      100 12.0 120.0 30.0 400.0
      200 12.0 60.0 15.0 250.0
      250 12.0 48.0 12.0 150.0
      400 12.0 30.0 7.5 100.0
      500 12.0 24.0 6.0 100.0
      900 12.0 13.3 3.3 40.0
      1 000 12.0 12.0 3.0 30.0
      1 500 12.0 8.0 2.0 20.0
      2 000 12.0 6.0 1.5 15.0
    • 超声横波检测技术是利用超声横波在混凝土中传播,当遇到波阻抗差异界面(如蜂窝、孔洞、离析)时,会产生折射、反射、绕射及散射等现象。通过分析接收波的振幅、频率等声学参数的相关变化来判断混凝土的缺陷[17]

    • 根据构件或结构的几何形状、所处环境、尺寸大小以及所能提供的测试表面等条件,选用不同的测试方法。一般常用的检测方法[18-19]表2

      表 2  超声横波检测方法

      Table 2.  Ultrasonic transverse wave detection method

      编号 检测方法 适用条件
      1 对测法 一般用于梁、柱等长条形构件检测。
      2 角测法 一般用于仅两个直角边可供检测的构件。
      3 平测法 一般用于仅一个表面可供检测的构件,如隧道
      衬砌、筏板等。
    • 由于超声波能量较低,且易在混凝土中发生折射和反射,能量衰减较快,一般仅能用于混凝土浅层检测,部分超声波检测仪参数如表3所示。

      表 3  超声波检测仪参数

      Table 3.  Ultrasonic detector parameters

      设备型号A1040 MIRA 3D 混凝土三维超声波成像仪HC-U91 混凝土超声波检测仪
      检测方法平测法对测法
      超声波频率/ kHz10~10010~10 000
      被测混凝土最大
      深度/ mm
      1 000~1 500500
      缺陷深度测量
      范围/ mm
      50~1 5005~500
    • 钻孔检测法是利用专用钻机,在混凝土基础上钻取芯样,并根据钻取芯样质量及钻孔内实体拍照来分析混凝土缺陷的方法,该方法是目前最直观、最准确的检测混凝土缺陷的方法。

      钻孔孔径与孔位布置[20]:钻孔检测是一种有损检测,钻孔个数越少、孔径越小对基础损伤越小。在钻孔布位前,应充分分析现有资料(如锚栓张拉异常情况、风机基础施工图等),分析基础缺陷平面位置,据此在基础上布置钻孔孔位。钻孔正式施工前,可采用小型工具人工凿除钻孔周边混凝土保护层,根据内部钢筋布置情况,对孔洞位置进行微调,从而尽量避开基础钢筋。对采取的芯样可进行强度、内部浇筑质量分析。

      钻孔施工:钻孔施工前,应复核钻头对孔对中及钻杆的垂直度,确保孔位、孔的垂直度。钻孔施工时,必须采用冷却水来冷却钻头和排出混凝土碎屑,钻机钻一段后取出芯样,再次向下钻取,直至钻至设计标高。

      检测及清孔:钻孔过程中可根据钻头和连接杆的长度计算钻孔深度。完成钻孔后应检查孔内是否含有残渣,保证芯样全部取出。

      内窥镜、高压注气、注水试验:钻孔完成后,可采用内窥摄像头观测孔侧及孔底情况。必要时还可通过注气、注水试验来检测内部孔洞的连通性。

    • 某风电场项目,选用容量为6.25 MW的风力发电机组,基础采用预应力锚栓式基础。风机基础形式为重力式圆形扩展基础。基础底板直径为21 m,基础总高度为4.25 m,台柱直径为6.7 m,台柱高度为1.34 m,基础悬挑根部高度为2.86 m,基础边缘高度为0.8 m,基础埋深为3.8 m。基础采用了192根预应力锚栓,锚栓预应力为617 kN,超张拉系数1.15。

      施工单位在安装塔筒时发现有多台风机基础部分锚栓预紧时力矩达不到设计要求、出现异常伸长量,初步分析时由于下锚板部位混凝土不密实造成。

      检测单位采用地质雷达法、超声横波法和钻孔检测法对风机基础进行检测。

    • 图3所示,本次检测采用SIR-30E型地质雷达,电磁波频率为400 MHz。沿风机基础塔筒外侧壁和距离塔筒壁50 cm布置两道测线。风机基础测线起点为塔筒门正下方右侧, 见图4

      图  3  地质雷达现场检测

      Figure 3.  Geological radar on-site detection

      图  4  地质雷达和超声横波成像测线布置图

      Figure 4.  Layout of geological radar and ultrasonic transverse wave imaging survey lines

      检测结果图像如图5所示。

      图  5  C12机位L1、L2测线检测图像

      Figure 5.  Detection images of L1,L2 survey lines at C12 position

      根据图像结果解析,基础内混凝土较密实,未发现明显孔洞。

    • 本次检测采用MIRA1040型超声横波成像仪,风机测线布置同地质雷达,详见图4。检测结果如图6所示。

      图  6  C12机位L1、L2测线检测图像

      Figure 6.  Detection images of L1,L2 survey lines at C12 position

      根据图像结果解析,基础内混凝土较密实,未发现明显孔洞。

    • 根据前期锚栓张拉情况,本次检测时在锚栓张拉异常区域进行钻孔检测,钻孔采用水钻法,孔径32 mm,钻孔深度钻至下锚板标高处。钻孔完成后采用内窥镜成像,部分钻孔底部影像如图7所示。

      图  7  C12 机位1号&8号孔位孔底影像

      Figure 7.  Bottom image of hole No.1 & No.8 at C12 position

    • 通过钻孔内窥镜影像可以看出,基础下锚板附近存在孔洞和不密实情况;而地质雷达和超声横波检测图像显示基础内混凝土较密实,未发现基础内存在孔洞。由此可见,地质雷达和超声横波对混凝土深层位置的缺陷识别能力有限。

      地质雷达法和超声波检测速度快、检测面广、数据多且对基础没有损伤,但仅可用于混凝土浅层缺陷检测;钻孔检测法检测结果直观,能真实反映基础缺陷现状,适用与混凝土各种深度范围内缺陷检测,但会对混凝土结构带来一定程度的损伤。

    • 本文通过分析地质雷达法、超声横波法、钻孔检测法、有限元法检测原理和检测手段,结合工程案例对各种检测方法效果进行比较,主要结论如下:

      1) 地质雷达法有效检测深度和精度与电磁波的频率有关,电磁波的频率增高,有效检测深度越小,精度越高;地质雷达法适用于混凝土内部1.5 m深度范围内检测。

      2) 超声横波法在混凝土中波的衰减较快,一般仅适用于混凝土浅层检测。

      3) 钻孔检测法是一种最直观的检测手段,可以有效反映出混凝土内部缺陷真实情况,对于混凝土深层缺陷检测较为适用。

参考文献 (20)

目录

    /

    返回文章
    返回