[1] ADGER N, AGGARWAL P, AGRAWALA S, et al. Climate change 2007: impacts, adaptation and vulnerability [R]. Geneva: WMO, 2007: 469-506.
[2] Intergovernmental Panel on Climate Change (IPCC). 6 – Cities, settlements and key infrastructure [M]//Intergovernmental Panel on Climate Change (IPCC). Climate Change 2022 – Impacts, Adaptation and Vulnerability. Cambridge: Cambridge University Press, 2023: 907-1040. DOI:  10.1017/9781009325844.008.
[3] ANIKEEVA O, HANSEN A, VARGHESE B, et al. The impact of increasing temperatures due to climate change on infectious diseases [J]. BMJ, 2024, 387: e079343. DOI:  10.1136/bmj-2024-079343.
[4] KROEGER C. Heat is associated with short-term increases in household food insecurity in 150 countries and this is mediated by income [J]. Nature human behaviour, 2023, 7(10): 1777-1786. DOI:  10.1038/s41562-023-01684-9.
[5] LONG Y, YOSHIDA Y, KAJIKAWA Y. Extreme heat disproportionately exacerbates health issues by threatening fresh food supply [J]. Nature climate change, 2024, 14(11): 1109-1111. DOI:  10.1038/s41558-024-02172-2.
[6] FAN J L, HU J W, ZHANG X. Impacts of climate change on electricity demand in China: an empirical estimation based on panel data [J]. Energy, 2019, 170: 880-888. DOI:  10.1016/j.energy.2018.12.044.
[7] 王丽娟, 任永建, 王俊超, 等. 基于气象因素的长江经济带湖北段夏季日最大电力负荷预测 [J]. 南方能源建设, 2024, 11(1): 133-142. DOI:  10.16516/j.ceec.2024.1.14.

WANG L J, REN Y J, WANG J C, et al. Prediction of summer daily maximum power load in the Hubei section of the Yangtze River economic belt based on meteorological factors [J]. Southern energy construction, 2024, 11(1): 133-142. DOI:  10.16516/j.ceec.2024.1.14.
[8] 许畅, 陈正洪, 刘军. 我国社会用电量对气温变化的响应及其时空差异 [J]. 南方能源建设, 2025, 12(2): 36-47. DOI:  10.16516/j.ceec.2024-182.

XU C, CHEN Z H, LIU J. The response of social electricity consumption on temperature changes and its temporal and spatial variations in China [J]. Southern energy construction, 2025, 12(2): 36-47. DOI:  10.16516/j.ceec.2024-182.
[9]

VAN VLIET M T H, THORSLUND J, STROKAL M, et al. Global river water quality under climate change and hydroclimatic extremes [J]. Nature reviews earth & environment, 2023, 4(10): 687-702. DOI:  10.1038/s43017-023-00472-3.
[10] 赵紫原, 姚金楠. 多重因素引发广东“拉闸限电” [N]. 中国能源报, 2021-05-31(12).

ZHAO Z Y, YAO J N. Multiples factors cause "Power rationing" in Guangdong province [N]. China energy news, 2021-05-31(12).
[11]

HAO Z C, CHEN Y, FENG S F, et al. The 2022 Sichuan-Chongqing spatio-temporally compound extremes: a bitter taste of novel hazards [J]. Science bulletin, 2023, 68(13): 1337-1339. DOI:  10.1016/j.scib.2023.05.034.
[12]

HUA W J, DAI A G, QIN M H, et al. How unexpected was the 2022 summertime heat extremes in the middle reaches of the Yangtze River? [J]. Geophysical research letters, 2023, 50(16): e2023GL104269. DOI:  10.1029/2023GL104269.
[13] 四川省人民政府. 全社会节电行动后 实际电力负荷有下降 [EB/OL]. (2022-08-23) [2022-09-20]. https://www.sc.gov.cn/10462/10464/10797/2022/8/23/faf4c7d666304d60b776015f5d6103f3.shtml.

The People's Government of Sichuan Province. There was a drop in actual power load following the community-wide power saving initiative [EB/OL]. (2022-08-23) [2022-09-20]. https://www.sc.gov.cn/10462/10464/10797/2022/8/23/faf4c7d666304d60b776015f5d6103f3.shtml.
[14] 刘喆, 王飞, 韩钦梅, 等. 2022年长江上游流域严重干旱对三峡水电站水力发电的影响分析 [J]. 气候变化研究进展, 2024, 20(1): 37-47 DOI:  10.12006/j.issn.1673-1719.2023.157.

LIU Z, WANG F, HAN Q M, et al. Analysis of the impact of severe drought in the upper Yangtze River basin on the hydroelectricity production of the Three Gorges Hydropower Station in 2022 [J]. Climate change research, 2024, 20(1): 37-47. DOI:  10.12006/j.issn.1673-1719.2023.157.
[15]

WARTENBURGER R, HIRSCHI M, DONAT M G, et al. Changes in regional climate extremes as a function of global mean temperature: an interactive plotting framework [J]. Geoscientific model development, 2017, 10(9): 3609-3634. DOI:  10.5194/gmd-10-3609-2017.
[16]

SUN Y, HU T, ZHANG X B. Substantial increase in heat wave risks in China in a future warmer world [J]. Earth’s future, 2018, 6(11): 1528-1538. DOI:  10.1029/2018EF000963.
[17] 《第四次气候变化国家评估报告》编写委员会. 第四次气候变化国家评估报告 [M]. 北京: 科学出版社, 2022.

Committee of the 4th National Assessment Report of Climate Change. The 4th national assessment report of climate change [M]. Beijing: Science Press, 2022.
[18] 尹红, 孙颖. 基于ETCCDI指数2017年中国极端温度和降水特征分析 [J]. 气候变化研究进展, 2019, 15(4): 363-373 DOI:  10.12006/j.issn.1673-1719.2018.164.

YIN H, SUN Y. Characteristics of extreme temperature and precipitation in China in 2017 based on ETCCDI indices [J]. Climate change research, 2019, 15(4): 363-373. DOI:  10.12006/j.issn.1673-1719.2018.164.
[19] 王国复, 叶殿秀, 张颖娴, 等. 2017年我国区域性高温过程特征及异常大气环流成因分析 [J]. 气候变化研究进展, 2018, 14(4): 341-349. DOI:  10.12006/j.issn.1673-1719.2018.008.

WANG G F, YE D X, ZHANG Y X, et al. Characteristics and abnormal atmospheric circulation of regional high temperature process in 2017 over China [J]. Climate change research, 2018, 14(4): 341-349. DOI:  10.12006/j.issn.1673-1719.2018.008.
[20] 王荣, 王遵娅, 高荣, 等. 1961-2020年中国区域性高温过程的气候特征及变化趋势 [J]. 地球物理学报, 2023, 66(2): 494-504. DOI:  10.6038/cjg2022P0756.

WANG R, WANG Z Y, GAO R, et al. Climatology and changing trend of the regional high temperature process in China during 1961-2020 [J]. Chinese journal of geophysics, 2023, 66(2): 494-504. DOI:  10.6038/cjg2022P0756.
[21]

CHEN R D, WEN Z P, LU R Y. Evolution of the circulation anomalies and the quasi-biweekly oscillations associated with extreme heat events in southern China [J]. Journal of climate, 2016, 29(19): 6909-6921. DOI:  10.1175/JCLI-D-16-0160.1.
[22] 林爱兰, 谷德军, 彭冬冬, 等. 近60年我国东部区域性持续高温过程变化特征 [J]. 应用气象学报, 2021, 32(3): 302-314. DOI:  10.11898/1001-7313.20210304.

LIN A L, GU D J, PENG D D, et al. Climatic characteristics of regional persistent heat event in the eastern China during recent 60 years [J]. Journal of applied meteorological science, 2021, 32(3): 302-314. DOI:  10.11898/1001-7313.20210304.
[23] 彭京备, 孙淑清, 林大伟. 2022年8月长江流域持续性极端高温事件成因 [J]. 应用气象学报, 2023, 34(5): 527-539. DOI:  10.11898/1001-7313.20230502.

PENG J B, SUN S Q, LIN D W. The extreme hot event along the Yangtze Basins in August 2022 [J]. Journal of applied meteorological science, 2023, 34(5): 527-539. DOI:  10.11898/1001-7313.20230502.
[24] 中国气象局. 气象观测资料质量控制地面: QX/T 118-2020 [S]. 北京: 气象出版社, 2020.

China Meteorological Administration. Quality control of meteorological observation data- surface: QX/T 118-2020 [S]. Beijing: China Meteorological Press, 2020.
[25] 中国气象局. 极端高温监测指标: QX/T 280-2015 [S]. 北京: 中国气象出版社, 2015.

China Meteorological Administration. Monitoring indices of high temperature extremes: QX/T 280-2015 [S]. Beijing: China Meteorological Press, 2015.
[26] 中国气象局. 气候指数高温: QX/T 595-2021 [S]. 北京: 气象出版社出版, 2021.

China Meteorological Administration. Climate index- high temperature: QX/T 595-2021 [S]. Beijing: China Meteorological Press, 2021.
[27] 中国气象局. 区域性高温天气过程等级划分: QX/T 228-2014 [S]. 北京: 中国气象出版社出版, 2014.

China Meteorological Administration. Classification of regional high temperature weather process: QX/T 228-2014 [S]. Beijing: China Meteorological Press, 2014.
[28] 重庆市市场监督管理局. 区域性气象灾害过程评估规范 第1部分: 高温: DB50/T 1125.1-2021 [S]. 2021.

Chongqing Administration for Market Regulation. Regional meteorological hazard process assessment standard Part I: high temperature: DB50/T 1125.1-2021 [S]. 2021.
[29] 李庆祥, 黄嘉佑. 对我国极端高温事件阈值的探讨 [J]. 应用气象学报, 2011, 22(2): 138-144 DOI:  10.3969/j.issn.1001-7313.2011.02.002.

LI Q X, HUANG J Y. Threshold values on extreme high temperature events in China [J]. Journal of applied meteorological science, 2011, 22(2): 138-144. DOI:  10.3969/j.issn.1001-7313.2011.02.002.
[30]

MAKRIDAKIS S, WHEELWRIGHT S, HYNDMAN R J. Forecasting: methods and applications (3rd ed. ) [M]. New York: John Wiley & Sons, 1997.
[31]

SNEYERS R. On the statistical analysis of series of observations [R]. Geneva: World Meteorological Organization, 1990.
[32]

MANN H B. Nonparametric tests against trend [J]. Econometrica, 1945, 13(3): 245-259. DOI:  10.2307/1907187.
[33]

KENDALL M G. Rank correlation methods [M]. London: Charles Griffin, 1948.
[34] 魏凤英. 现代气候统计诊断与预测技术 [M]. 北京: 北京气象出版社, 1999.

WEI F Y. The current statistical climatic diagnosis and forecasting technology [M]. Beijing: Beijing Meteorological Press, 1999.
[35]

ZARENISTANAK M, DHORDE A G, KRIPALANI R H. Trend analysis and change point detection of annual and seasonal precipitation and temperature series over southwest Iran [J]. Journal of earth system science, 2014, 123(2): 281-295. DOI:  10.1007/s12040-013-0395-7.
[36]

BROWN P T, MING Y, LI W H, et al. Change in the magnitude and mechanisms of global temperature variability with warming [J]. Nature climate change, 2017, 7(10): 743-748. DOI:  10.1038/nclimate3381.
[37]

DENG K Q, YANG S, TING M, et al. An intensified mode of variability modulating the summer heat waves in eastern Europe and northern China [J]. Geophysical research letters, 2018, 45(20): 11361-11369. DOI:  10.1029/2018GL079836.
[38]

FREYCHET N, TETT S, WANG J, et al. Summer heat waves over eastern China: dynamical processes and trend attribution [J]. Environmental research letters, 2017, 12(2): 024015. DOI:  10.1088/1748-9326/aa5ba3.
[39]

PERKINS S E. A review on the scientific understanding of heatwaves: their measurement, driving mechanisms, and changes at the global scale [J]. Atmospheric research, 2015, 164-165: 242-267. DOI:  10.1016/j.atmosres.2015.05.014.
[40]

WANG P Y, YANG Y, XUE D K, et al. Aerosols overtake greenhouse gases causing a warmer climate and more weather extremes toward carbon neutrality [J]. Nature communications, 2023, 14(1): 7257. DOI:  10.1038/s41467-023-42891-2.