[1] |
BOZOGLAN E, MIDILLI A, HEPBASLI A. Sustainable assessment of solar hydrogen production techniques [J]. Energy, 2012, 46(1): 85-93. DOI: 10.1016/j.energy.2012.03.029. |
[2] |
SÁNCHEZ-SQUELLA A, FLORES R, BURGOS R, et al. 99.6% efficiency DC-DC coupling for green hydrogen production using PEM electrolyzer, photovoltaic generation and battery storage operating in an off-grid area [J]. Renewable energy, 2024, 237: 121781. DOI: 10.1016/j.renene.2024.121781. |
[3] |
HÜNER B. Mathematical modeling of an integrated photovoltaic-assisted PEM water electrolyzer system for hydrogen production [J]. International journal of hydrogen energy, 2024, 79: 594-608. DOI: 10.1016/j.ijhydene.2024.07.041. |
[4] |
SCHMIDT O, GAMBHIR A, STAFFELL I, et al. Future cost and performance of water electrolysis: an expert elicitation study [J]. International journal of hydrogen energy, 2017, 42(52): 30470-30492. DOI: 10.1016/j.ijhydene.2017.10.045. |
[5] |
ŁOSIEWICZ B. Technology for green hydrogen production: desk analysis [J]. Energies, 2024, 17(17): 4514. DOI: 10.3390/en17174514. |
[6] |
HERNÁNDEZ-GÓMEZ Á, RAMIREZ V, GUILBERT D, et al. Development of an adaptive static-dynamic electrical model based on input electrical energy for PEM water electrolysis [J]. International journal of hydrogen energy, 2020, 45(38): 18817-18830. DOI: 10.1016/j.ijhydene.2020.04.182. |
[7] |
KARAGÖZ Y, BALCI Ö, ORAK E, et al. Effect of hydrogen addition using on-board alkaline electrolyser on SI engine emissions and combustion [J]. International journal of hydrogen energy, 2018, 43(24): 11275-11285. DOI: 10.1016/j.ijhydene.2018.04.235. |
[8] |
LEE K J, LEE M J, HWANG H. High-temperature steam electrolysis combined with methane partial oxidation by solid oxide electrolyzer cells [J]. Applied surface science, 2019, 473: 746-749. DOI: 10.1016/j.apsusc.2018.12.128. |
[9] |
LEI Y C, ZHOU J Y, ZHOU W T, et al. Advanced development of anion-exchange membrane electrolyzers for hydrogen production: from anion-exchange membranes to membrane electrode assemblies [J]. Chemical communications, 2024, 60(79): 11000-11016. DOI: 10.1039/d4cc03043e. |
[10] |
ABHISHEK U S, TEWARI P K, ANAND V. Mathematical modelling and dynamics of proton exchange membrane electrolyzer [J]. International journal of hydrogen energy, 2025, 99: 189-202. DOI: 10.1016/j.ijhydene.2024.12.129. |
[11] |
郭常青, 伊立其, 闫常峰, 等. 太阳能光伏-PEM水电解制氢直接耦合系统优化 [J]. 新能源进展, 2019, 7(3): 287-294 DOI: 10.3969/j.issn.2095-560X.2019.03.012.
GUO C Q, YI L Q, YAN C F, et al. Optimization of photovoltaic-PEM electrolyzer direct coupling systems [J]. Advances in new and renewable energy, 2019, 7(3): 287-294. DOI: 10.3969/j.issn.2095-560X.2019.03.012. |
[12] |
RAZI F, DINCER I. A critical evaluation of potential routes of solar hydrogen production for sustainable development [J]. Journal of cleaner production, 2020, 264: 121582. DOI: 10.1016/j.jclepro.2020.121582. |
[13] |
KHALILNEJAD A, SUNDARARAJAN A, ABBASPOUR A, et al. Optimal operation of combined photovoltaic electrolyzer systems [J]. Energies, 2016, 9(5): 332. DOI: 10.3390/en9050332. |
[14] |
GARCÍA-VALVERDE R, ESPINOSA N, URBINA A. Optimized method for photovoltaic-water electrolyser direct coupling [J]. International journal of hydrogen energy, 2011, 36(17): 10574-10586. DOI: 10.1016/j.ijhydene.2011.05.179. |
[15] |
OMAR F A. A new approach for improving the efficiency of the indirectly coupled photovoltaic-electrolyzer system [J]. International journal of hydrogen energy, 2023, 48(24): 8768-8782. DOI: 10.1016/j.ijhydene.2022.11.327. |
[16] |
周行, 李少华, 王慧, 等. 光伏耦合电解水制氢系统的建模与仿真 [J]. 南方能源建设, 2023, 10(3): 104-111. DOI: 10.16516/j.gedi.issn2095-8676.2023.03.011.
ZHOU H, LI S H, WANG H, et al. Modelling and simulation of photovoltaic coupling water electrolysis hydrogen production system [J]. Southern energy construction, 2023, 10(3): 104-111. DOI: 10.16516/j.gedi.issn2095-8676.2023.03.011. |
[17] |
GUTIÉRREZ-MARTÍN F, AMODIO L M, PAGANO M. Hydrogen production by water electrolysis and off-grid solar PV [J]. International journal of hydrogen energy, 2021, 46(57): 29038-29048. DOI: 10.1016/j.ijhydene.2020.09.098. |
[18] |
HASSANI H, ZAOUCHE F, REKIOUA D, et al. Feasibility of a standalone photovoltaic/battery system with hydrogen production [J]. Journal of energy storage, 2020, 31: 101644. DOI: 10.1016/j.est.2020.101644. |
[19] |
DAHBI S, ABOUTNI R, AZIZ A, et al. Optimised hydrogen production by a photovoltaic-electrolysis system DC/DC converter and water flow controller [J]. International journal of hydrogen energy, 2016, 41(45): 20858-20866. DOI: 10.1016/j.ijhydene.2016.05.111. |
[20] |
杨强, 马柱, 白丽弘, 等. 光伏制氢系统建模与多海拔应用的稳定性研究 [EB/OL]. 全球能源互联网, 2025: 1-9(2024-12-16) [2025-04-17]. http://kns.cnki.net/kcms/detail/10.1550.TK.20241213.1650.002.html.
YANG Q, MA Z, BAI L H, et al. Modeling and multi-altitude stability study of photovoltaic hydrogen production system [J]. Journal of global energy interconnection, 2025: 1-9(2024-12-16) [2025-04-17]. http://kns.cnki.net/kcms/detail/10.1550.TK.20241213.1650.002.html. |
[21] |
GU X F, YING Z, ZHENG X Y, et al. Photovoltaic-based energy system coupled with energy storage for all-day stable PEM electrolytic hydrogen production [J]. Renewable energy, 2023, 209: 53-62. DOI: 10.1016/j.renene.2023.03.135. |
[22] |
LIU X Y, ZOU J, LONG R, et al. Variable period sequence control strategy for an off-grid photovoltaic-PEM electrolyzer hydrogen generation system [J]. Renewable energy, 2023, 216: 119074. DOI: 10.1016/j.renene.2023.119074. |
[23] |
SALOUX E, TEYSSEDOU A, SORIN M. Explicit model of photovoltaic panels to determine voltages and currents at the maximum power point [J]. Solar energy, 2011, 85(5): 713-722. DOI: 10.1016/j.solener.2010.12.022. |
[24] |
ABDOL RAHIM A H, TIJANI A S, KAMARUDIN S K, et al. An overview of polymer electrolyte membrane electrolyzer for hydrogen production: modeling and mass transport [J]. Journal of power sources, 2016, 309: 56-65. DOI: 10.1016/j.jpowsour.2016.01.012. |
[25] |
AWASTHI A, SCOTT K, BASU S. Dynamic modeling and simulation of a proton exchange membrane electrolyzer for hydrogen production [J]. International journal of hydrogen energy, 2011, 36(22): 14779-14786. DOI: 10.1016/j.ijhydene.2011.03.045. |
[26] |
CHOI P, BESSARABOV D G, DATTA R. A simple model for solid polymer electrolyte (SPE) water electrolysis [J]. Solid state ionics, 2004, 175(1/4): 535-539. DOI: 10.1016/j.ssi.2004.01.076. |
[27] |
ZOU L, SHEN Q W, YANG G G, et al. Improved hydrogen production efficiency of a photovoltaic-electrolysis system with P&O algorithm: a case study [J]. Chemical physics letters, 2023, 832: 140891. DOI: 10.1016/j.cplett.2023.140891. |
[28] |
DEBE M K, HENDRICKS S M, VERNSTROM G D, et al. Initial performance and durability of ultra-low loaded NSTF electrodes for PEM electrolyzers [J]. Journal of the electrochemical society, 2012, 159(6): K165-K176. DOI: 10.1149/2.065206jes. |
[29] |
李金玉. 风光互补发电制氢储能系统研究 [D]. 天津: 天津商业大学, 2021. DOI: 10.27362/d.cnki.gtsxy.2021.000101.
LI J Y. Research on hydrogen generation and energy storage system based on wind-solar hybrid power generation [D]. Tianjin: Tianjin University of Commerce, 2021. DOI: 10.27362/d.cnki.gtsxy.2021.000101. |