-
气候变化不断为人类社会敲响警钟,实现碳中和对全球气温快速提升发挥着重要控制作用。完成能源消费结构从化石能源为主体向零碳新能源为主体的转型,是实现碳中和目标的首要任务[1-3]。
据不完全统计,我国现有各类排土场5 000余座,累计矸石堆积量超过30亿t[4-5]。针对矿渣排土场土地的开发、利用及治理,光伏电站的建设既可以解决发展低碳经济、节能减排、开发绿色清洁新能源、实现能源结构调整面临的问题,也可以实现对矿渣排土场的综合治理,是综合治理矿渣排土场的创新性解决方案,对其他类型排土场的治理具有示范作用[6-7]。
文章以某煤矿排土场光伏发电项目为例,以用地利用与装机容量最大化为目标,对系统总体方案优化进行分析,并提供边坡柔性光伏支架设计方案,供同类工程设计人员参考。
-
某煤矿排土场光伏电站项目原规划交流侧装机容量为50.40 MW,采用全固定支架形式,直流侧装机容量64.35 MWp,共布置16个标称容量3.15 MW的组串式逆变方阵,新建一座110 kV升压站,年均上网电量92.454 4 GWh。建设用地场址如图1所示。
-
1)原方案红线范围约77.46 hm2,最新红线范围仅仅46.73 hm2左右,较原方案少30.73 hm2(南坡用地急剧减少)。同升压站位置调整至光伏场区内。
2)原方案采用的全固定支架形式。现调整为固定支架+柔性支架组合方案,场地较平缓部分区域考虑布置固定支架,柔性支架主要设置在坡面处,占比为40%~45%。光伏组串布置如图2所示。
-
不同倾角下度电投资变化情况如表1所示。当倾角在15°~25°变化时,发电量变化较小;由于倾角变化导致的土地面积及支架倾角变化,在 15°~25°时,度电成本16°~20°接近,19°度电成本最优。
倾角/(°) 年等效满负荷
小时/h单位千瓦静态
投资/[元·(kW)−1]度电投资/
[元·(kWh)−1]15 1 470.62 4 081.5 2.768 8 16 1 473.50 4 083.5 2.765 0 17 1 475.80 4 085.5 2.764 8 18 1 477.66 4 087.5 2.764 3 19 1 479.38 4 089.5 2.764 0 20 1 480.40 4 091.5 2.764 2 21 1 481.23 4 093.5 2.764 6 22 1 481.50 4 095.5 2.765 0 23 1 481.52 4 097.5 2.765 7 24 1 481.29 4 099.5 2.766 2 25 1 480.59 4 101.5 2.768 2 Table 1. Changes in kWh investment at different angles
1)方案一:固定支架倾角按16°,柔性支架东西向固定倾角按4°,南向及偏南方向顺坡布置。对于固定支架平地的间距根据固定倾角为16°的净距离为2 m,偏南方向最小净距离为1 m,东西坡及偏北坡按遮挡确定组串之间的净距离。对于柔性支架,固定倾角偏南方向、顺坡布置的最小净距离为0.75 m,偏北方向按遮挡因素确定组串之间的净距离。通过对倾角的优化处理,平地及整体偏南区域考虑布置固定支架,边坡区域考虑布置柔性支架。本方案共布置有12个方阵,直流侧装机容量为48.263 04 MWp。
2)方案二:根据最佳倾角确定,固定支架倾角采用24°,柔性支架固定倾角采用19°。对于固定支架平地的间距固定倾角为24°的净距离为2 m,偏南方向最小净距离为1 m,东西坡及偏北坡按遮挡确定组串之间的净距离。对于柔性支架,固定倾角朝南方向、顺坡布置的最小净距离为1 m,偏北方向按遮挡因素确定组串之间的净距离。固定倾角朝东西的间距为2 m, 平地、整体偏南区域及小区域等考虑布置固定支架,有边坡等区域布置柔性支架。本方案共布置有10个方阵,直流侧装机容量为40.219 2 MWp。
-
1)光伏发电系统效率分析
方案一:首年的光伏发电系统效率约为81.30%,系统总效率约为83.73%。
方案二:首年的光伏发电系统效率约为82.96%,系统总效率约为85.44%。
2)发电量及首年利用小时数估算
方案一:直流侧装机容量约为48 MWp,首年发电量约为73.383 GW·h,25 a总发电量约为1 773.493 GW·h,首年利用小时数约为1 528.81 h,25 a年平均利用小时数约为1 444.58 h。
方案二:直流侧装机容量约为40 MWp,首年发电量约为67.080 6 GW·h,25 a总发电量约为1 584.613 3 GW·h,首年利用小时数约为1 560.01 h,25 a年平均利用小时数约为1 474.06 h。
根据现有用地红线范围(46.73 hm2),直流侧装机容量:方案一比方案二增加8 MWp左右;25 a总发电量:方案一比方案二增加10%~15%;发电系统总效率:方案一比方案二减少2%左右。
-
柔性光伏支架利用钢索结构成功解决地形复杂的山地、煤矿排土场等受跨度和高度所限造成传统支架无法安装的技术难题[8-10]。项目完工后的鸟瞰图如图3所示。
-
根据煤矿排土场当地的气候特点,地理位置,地貌特征以及受力荷载情况进行设计。
此项目柔性光伏支架可采用端部双立柱,中间单立柱结构,更适合煤矿回填区的地势特点,利于支架结构在平面内及平面外进行调节。柔性支架形式如图4所示。
-
构件要结合实际的跨度、柱距通过计算设计结构方案和结构措施保证构件的强度、刚度、稳定性。保证拉索以及横梁的挠度要求。根据不同的温、湿度环境以及特殊要求的地区采取特殊的防腐处理。支架跨度一般采用12~25 m设计,总跨度的长度根据地势进行调整,一般不超过300 m。柔性支架计算流程如图5所示。
根据支架在各工况荷载的作用下所受力学分析设计光伏支架结构及基础。
结构设计中的相关控制参数如下:
1) 本工程结构的设计使用年限为25 a。
2) 结构的安全等级为三级。
3) 结构重要性系数取0.95。
4) 根据《建筑结构荷载规范》,项目地基本风压:0.28 kN/m2(25 a),取0.3 kN/m2(25 a)。
5) 钢绞线铺设组件后下挠值:f=150 mm。
6) 钢绞线初始张拉力:H(负)=15 kN。
7) 柔性支架东西坡高到低南向倾角4°,南、西南、东南向高到低随坡就势布置。
8) 柔性支架光伏面板下边缘离地高度不小于2.5 m 。
9) 组件功率:550 Wp;组件尺寸:2 278 mm × 1 134 mm × 35 mm。
-
本文以某煤矿排土场光伏发电项目为例,采取了倾角调整、平面布置调整与刚柔支架组合等一系列的优化措施,在实际工程中均得到了实现。得出以下几点结论:
1)根据煤矿排土场地质条件,并结合项目自身特点、目前厂家支架技术水平、施工控制及安全、工程造价等因素,场地较缓区域考虑布置固定支架,柔性支架主要考虑设置在地势起伏较大区域(主要设置在边坡面上)体现出它自身的优势。此方案保证其装机容量、工程安全等的同时,煤矿排土场边坡布置柔性支架增加了本工程创新性,为后续相关工程起到示范作用。
2)在红线有限用地范围,为保证装机容量最大化,考虑固定支架固定倾角为16°,柔性支架布置依地形设置。直流侧装机容量:方案一比方案二增加8 MWp左右;25 a总发电量:方案一比方案二增加10%~15%。发电系统总效率:方案一比方案二减少2%左右。方案一发电系统总效率略低于方案二,但整体用地利用得到最大化,装机容量大大提升,因此在工程设计优化过程中,不仅仅考虑效率因素,更多的是需关注多目标因素优化带来的经济效益。
Optimization of Photovoltaic Power Generation Project Based on Coal Mine Dump
doi: 10.16516/j.ceec.2024.S1.03
- Received Date: 2023-12-29
- Rev Recd Date: 2024-03-22
- Publish Date: 2024-06-30
-
Key words:
- coal mine dump /
- flexible support /
- power generation efficiency /
- PV panel inclination angle /
- power generation project
Abstract:
Citation: | OUYANG Zhangzhi, MU Zhenghui, CAO Changsheng, et al. Optimization of photovoltaic power generation project based on coal mine dump [J]. Southern energy construction, 2024, 11(Suppl. 1): 14-18. DOI: 10.16516/j.ceec.2024.S1.03 doi: 10.16516/j.ceec.2024.S1.03 |