HTML
-
在全球温室气体的诸多来源中,电力尤其是发电行业无疑是温室气体排放的主要来源。由此,发电行业被普遍认为是降低二氧化碳排放的重点行业之一。一场脱碳引发的变革正在电力行业中如火如荼地进行。电网电源每千瓦时的碳强度[1]如图1所示。然而,在未来的几十年,发电行业的主要能源来源仍将依赖于传统的化石能源燃料和以碳氢化合物燃料为主的生物能源。根据伍德麦肯兹公司的预测:即使到2040年,通过燃烧化石燃料的方式获取的能源数量仍占世界能源总需求量的85%。到目前为止,总装机量约1 TW的风电以及太阳能仅占世界总发电量的8%左右。同时,考虑到发展中国家经济增长和人口膨胀的情况,电力总需求量上升,而发展中国家必然会选择较便宜及更稳定的化石燃料作为首选能源,这抵消了可再生能源的增加幅度。随着化石燃料的短缺和《巴黎协定》等严格排放法规的颁布,减少污染物气体排放,提高电厂的发电效率,已经成为燃烧领域越来越多学者的主要研究方向[2]。
Figure 1. Carbon intensity of grid power supply per kWh[1]
与煤炭、石油等传统燃料相比,天然气被视为最清洁的替代能源。但天然气依旧具有着火温度高、火焰传播速度慢的缺点。依旧无法摆脱化石能源的身份,碳排放量依旧很高。因此,有必要探索燃气轮机燃料的灵活性,探索掺氢燃烧对燃气轮机燃料的燃烧和排放特性的影响[3]。这是利用掺氢减少碳排放的关键技术路径。
氢气的反应活性高,能量容量大,氢气的加入可以显著提高甲烷-氢气混合物的燃烧效率,它被认为是一种很好的甲烷燃气轮机燃料添加剂[4-5]。并且,氢气可从可再生能源中制取,其制取技术路线如图2所示[6]。利用可再生能源产生的电能,可以用于制造氢气。
Figure 2. The technology route of hydrogen production[6]
迄今为止,重型以及航改型燃气轮机(用于发电)主要使用的燃料多为天然气或轻油等。近些年来,越来越多燃气轮机方面的专家与学者对拓宽燃气轮机多燃料的适应性进行了深入地研究。其中,对燃气轮机进行掺氢燃烧直到燃用纯氢和集成气化联合循环(IGCC)是拓宽燃料性能的重点方向。有着操作灵活、过程可控、零碳排放等优点的掺氢燃烧额燃气轮机必将成为国家“双碳”战略中改造新型电网的重要组成,图3详细描述了氢气与空气微混合的燃烧原理[7]。
Figure 3. Schematic of micro-mixing gas combustion with hydrogen added[7]
由于甲烷和氢气的化学属性与物理特性差异较大,对燃气轮机燃烧室影响较大的是氢气和甲烷的沃泊指数,氢气和甲烷的沃泊指数如图4所示[8],如果需要提供与天然气相同的热负荷,掺氢气天然气需要更大的体积流量。同时,因为氢气具有较高的扩散系数、火焰速度以及绝热火焰温度,这些都给燃烧室的安全稳定运行带来挑战,这些挑战包括燃料自燃、回火、火焰不稳定特性以及更高的污染物排放等。
Figure 4. Modified Wobbe index for all known gaseous fuels[8]
燃气轮机低污染燃烧技术实现的主要途径是通过降低火焰温度以达到减小NOx生成的目的,降低火焰温度的方法又可以分成2类:第一种是将燃料和稀释剂分别喷入燃烧区的扩散燃烧(以下简称“扩散燃烧”);第二种是将空气与燃料先按一定比例混合后再进入燃烧区的预混燃烧,其原理图分别如图5和图6所示。由于扩散燃烧技术具有工作稳定、燃料调节策略简单等优势,早期的燃气轮机一直采用扩散燃烧方式来控制NOx的排放。但是,随着国家排放标准的提高,为了使NOx排放降到50 mg/Nm3以下,需要向燃烧室内注入与燃料体积流量相当的稀释剂。这样做无疑增加了发电设备以及系统的复杂性,抬高了发电设备的造价,还严重影响了发电机组的效率。
Figure 5. Diffusive combustion[9]
Figure 6. Premixed combustion[9]
不需要加入稀释剂的干式低污染燃烧,采用贫燃料预混燃烧方式(即当量比小于1的预混燃烧),使燃烧偏离理论空气量的贫预混燃烧,是干式低污染燃烧技术的主流,能使NOx的排放远低于排放标准,目前已经广泛应用于燃用天然气燃料的燃气轮机,然而预混燃烧技术中的火焰不稳定性是其最主要的问题之一。并且氢气与天然气混合后较高的扩散系数、绝热火焰温度以及火焰速度都给燃烧室的安全稳定运行带来了挑战[9]。
贫预混燃烧能有效控制NOx的排放,但掺氢气贫预混燃烧会迎来2个新的问题:(1)掺氢气燃料,尤其是富氢燃料燃烧导致更高的绝热火焰温度反而会促进NOx的生成,正如图7中Lieuwen[10]等简化的NOx生成机制所示,热NO-N2与在高温下与氧反应促进NO的生成;(2)在当量比较低时,CO氧化为CO2的能力有限,将会产生更多的CO,如图8所示的富氢合成气在贫预混燃烧时CO呈现出显著上升的趋势。
Figure 7. Simplified schematic diagram of NOx formation mechanism[10]
Figure 8. Emissions of NOx and CO during lean combustion of methane and hydrogen-rich syngas[8]
-
层流燃烧速度是燃烧火焰的基本特性之一,是紊流燃烧的基础。层流预混燃烧与排放特性的研究可为湍流预混火焰的研究提供理论数据。本文采用了Chemkin Pro中的Premix Code的一维层流预混式自由传播火焰模型,原理示意图如图9所示。
计算过程中,混合气体流量的初值保持在0.04 g/(cm2·s)。计算域的距离为0~1 cm。网格细化标准设置为GRAD = 0.1, curv = 0.2。最终得到的网格总数约为150个,自适应网格为50个。迭代过程中的相对误差和绝对误差分别设为10−4和10−9,当初始温度升高到T = 723 K,固定温度设置1 000 K。对流项采用逆风差分法离散,采用平均法来计算混合物扩散系数。此外,Soret效应被考虑在所有的计算条件当中[11]。
-
为了在前人研究成果的基础上得到最精确的层流预混燃烧模型,选取了3种被广泛接受和使用的化学反应机理[12-14]。GRI-mech 3.0用于预测天然气的燃烧化学性质,还考虑了与丙烷和NOx化学有关的反应,共考虑53种物质和325种基元反应;USC-Mech II是一种广泛用于预测H2/CO/C1-C4燃烧化学的反应机理。该机制包括111种反应和784种基元反应;San Diego Mechanism用于模拟多达C4火焰的燃烧化学,考虑了57个组分和268个基本反应。
图10~图13,进行了掺氢比例分别为0,20%,50%,100%,采用以上3个化学动力学机理对层流燃烧速度模拟计算。为了验证所选化学动力学模型的准确性,将3种机制计算的层流燃烧速度(Laminar Burning Velocity,LBV)值与相关文献的值进行了比较[15-25]。
从图10~图12可以看出,从GRI Mech 3.0得到的层流燃烧速度与USC Mech 2.0和San Diego的结果相比,GRI Mech 3.0与实验值的一致性更好,特别是当量比大于0.9时。USC Mech 2.0和San Diego的预测结果与贫燃料实验值(φ<1)基本一致,对于化学计量学和富燃料条件(φ>1),计算值远低于实验值。对于掺氢燃料,GRI Mech 3.0和San Diego机制在整个当量比范围内对层流燃烧速度都有很好的预测。此外,GRI Mech 3.0是3种机制中唯一包含NO生成反应的机制,在接下来的模拟中选择GRI Mech 3.0。
-
图14~图16显示了不同初始温度(T = 298 K和T = 723 K)下LBV、NO和CO排放的变化,与T = 298 K相比,T = 723 K[26]时LBV、NO和CO排放要高得多。根据Arrhenius方程可知,反应的速率与反应的温度呈指数关系。可燃混合物初始温度的升高可以极大地促进反应速率,导致层流燃烧速度的增加。燃烧过程中NO的形成主要通过热途径,其他途径不太重要。随着初始温度的升高,热路线反应增强,促进NO排放的形成。此外,CO2在高温下的解离反应导致CO产量的增加。因此,初始温度越高,LBV越高,NOx和CO排放也越高。同时,可以看出,在相同的初设温度下,LBV随着掺氢比例的增加而增大,NOx排放随着掺氢比例的增加而增大,CO排放随着掺氢比例的增加而减小。
-
图17~图19为不同初始压力(P = 1.0 atm和P = 16.5 atm)下LBV、NO和CO的变化。压力的增加导致LBV和CO的降低,但促进NO的形成。随着压力的增加,LBV的降低是由于三体重组反应的增强。从本质上讲,分子碰撞的平均自由程度会随着物质的压力增大而减小,这反过来又增加了分子的碰撞频率,导致三体重组反应增强。初始压力的增加,增加了燃烧的反应速率,从而导致CO产量的减少。燃烧后区域NO的生成主要由热路主导。随着初始压力的增加,热路线反应增强,促进总NO的生成。因此,初始压力对LBV、NOx排放、CO排放的作用是不同的。同时,可以看出,在相同的初设压力下,LBV随着掺氢比例的增加而增大。NOx排放随着掺氢比例的增加而增大,但压力越高,这种作用越不明显。CO排放随着掺氢比例的增加而减小。
-
绝热火焰温度(Adiabatic Flame Temperature,AFT)是气体在绝热条件下燃烧时的最高温度。AFT随当量比(0.6 ~ 1.4)的变化如图20所示。AFT在当量比处于(0.6~1.05)时增加,在φ = 1.05左右达到峰值,然后随着当量比的增加开始下降。当φ>1时,燃烧产物的比热值下降速度快于放热速率。虽然放热不如φ= 1的情况,机组释放的热量可以提高更多的温度。因此,绝热火焰温度最高出现在φ = 1.05附近。氢的加入使绝热火焰温度略有升高。当${X_{{{\rm{H}}_2}}} $从0增加到100%时,混合物绝热火焰温度峰值提高了7.3%。此外,Arrhenius公式的反应速率系数具有较强的温度依赖性。因此,氢的加入加速了反应速率,导致AFT增加。
LBV是表征火焰反应活性的重要指标之一。图21显示了LBV随φ (0.6~1.4)的变化情况。可以看出,随着φ的增加,LBV先增大后减小。当${X_{{{\rm{H}}_2}}} $从0增加到100%时,甲烷氢混合物的LBV在φ>1时从37.6 cm/s增加到229.2 cm/s。
由以上分析可知,掺氢能提高绝热火焰温度(AFT)和层流燃烧速度(LBV),促进了燃烧发生的活性。
-
由H、O和OH引发的支链反应和链生长反应在化学反应中起着最重要的作用。图30~图35显示了加氢(${X_{{{\rm{H}}_2}}} $> = 0%、40%、80%、100%)对H、O、OH自由基生成率的影响。可以看出形成H、O和OH的主要反应有:
$$ \mathrm{H}+\mathrm{O}_2=\mathrm{O}+\mathrm{OH} \qquad\qquad\qquad \mathrm{R} 38 $$ $$ \mathrm{OH}+\mathrm{H}_2=\mathrm{H}+\mathrm{H}_2 \mathrm{O} \qquad\qquad\quad{\rm{R}}84$$ 从图中分析可得燃烧过程的主要反应区域位于自由基浓度峰值发生的位置。随着氢含量(${X_{{{\rm{H}}_2}}} $ = 0%、40%、80%、100%)和等效比(0.6 ~ 0.8)的增加,自由基生成率显著增加。此外,随着氢的加入,H、O和OH生成速率的峰位向上移动。${X_{{{\rm{H}}_2}}} $的增加可以加速(R84)的反应,产生更多的H自由基,从而进一步促进(R38)的反应。
-
燃气轮机的贫预混燃烧技术能使燃烧偏离理论空气量,是目前降低NOx排放主要技术,通过在天然气中掺混氢气燃烧,能够有效降低化石能源的消耗以及降低碳排放量。但天然气掺氢的贫预混燃烧所带来的较高的火焰温度反而会促进NOx的生成,同时,在较低的当量比下将会产生更多的CO。
我们通过分析不同初试温度和压力的层流燃烧速度、NOx和CO排放;不同掺氢比例对绝热火焰温度和层流燃烧速度的影响;不同掺氢比例H、O和OH自由基的影响;不同掺氢比例对温度分布的影响以及掺氢比例对支链反应和链生长反应的分析,掌握了天然气掺氢由贫到富燃烧的基本规律。可以得出以下主要结论:
1)层流燃烧速度(LBV)与绝热火焰温度(AFT)有很大的相关性,除纯氢燃料外,LBV和AFT随当量比φ先增大后减小。它们在大约φ = 1.05处达到峰值。在相同当量比下,随着${X_{{{\rm{H}}_2}}} $的增加,LBV和AFT逐渐增大。
2)随着${X_{{{\rm{H}}_2}}} $(0% ~ 100%)和φ(0.6 ~ 0.8)的增加,H、O和OH自由基的摩尔分数和生成率都有所增加。形成H、O和OH自由基的主要反应是H + O2 = O + OH和 OH + H2 = H + H2O。此外,氢的加入促进了火焰温度的升高,也增强了火焰区域的温度梯度。
3) 降低当量比(从1.2到0.6)可以显著降低 NO 排放。添加氢气可以提高燃料稀薄条件下的燃烧稳定性。可以为燃气轮机掺氢贫预混燃烧提供一定的理论经验。