-
A电厂建设规模为2×1 000 MW,位于广东省东南部的某镇,距县城约22 km,毗邻南海。
-
电厂淡水主要用于锅炉补给水原水、脱硫系统用水、喷雾除尘用水、输煤系统冲洗用水、煤场喷淋用水、空调补充水、生活用水及消防用水等,总用水量如表1所示。
项目 2×1 000 MW机组 平均小时用水量/(m3·h−1) 552.0 年平均用水量/万m3 283.896 百万千瓦容量耗水量/(m3·s−1·1 000 MW) 0.073 注:1.机组年利用小时数为5 000 h。
2.百万机组耗水量包括脱硫工艺用水,不包含厂外淡水管网漏损量。Table 1. Freshwater consumption of 2×1 000 MW units
-
本工程厂址东南向面临南海,附近无较大的河流,B河是本县唯一入海河流,也是全县淡水资源的主要来源。考虑到B河距离电厂较远,而且新建补给水系统证照办理手续较多,办理周期较长,而电厂位于海边,海水资源丰富,因此本报告主要对自来水和和海水淡化2种淡水水源方案进行技术经济比较论证。
-
机组淡水水源采用市政自来水,水源取自距厂址约22 km处的C自来水厂。
-
本项目需在自来水厂供水泵旁边增设2台供水泵(1用1备)。
为提高供水泵的使用年限,本项目新建一座自来水提升泵房,泵房(含配电间)尺寸长×宽×高=20 m×9 m×6 m,泵房内设有2台供水泵、1台电动桥式起重机、2台移动式排污泵。
-
在供水泵出口新建1根DN800的输水管道直接敷设至厂区内,管内流速约为0.83 m/s。输水管道采用
$\phi $ 820×10 mm焊接钢管,以埋地敷设为主,覆土埋深暂按1.2 m考虑,距离厂区约22 km。输水管道沿途设有联络阀门井、泄水阀门井和排气阀门井。 -
海水淡化系统用于制取本项目电厂2×1 000 MW发电机组所需的全部工业用水和生活用水,正常淡水需水量为552 m3/h,海水淡化系统出力也按此设计。
1)海水淡化方案的选择
目前,世界上常用的海水淡化方法有蒸馏法和反渗透法2种。其中,蒸馏法中常用多级闪蒸系统和多效蒸发系统。
多级闪蒸系统和低温多效蒸发系统的基本原理都是利用蒸汽对海水进行表面加热,加热后的海水在具有一定真空度的多级蒸发器中连续蒸发而得到淡水。大容量多级闪蒸和低温多效装置需采用进口设备。
反渗透法是通过反渗透膜对海水中的溶解物质进行分离,达到制取淡水的目的。
由于多级闪蒸系统和多效蒸发系统设备造价非常昂贵,远高于反渗透系统。因此,本报告着重对反渗透海水淡化系统进行比较。
2)反渗透法海水淡化技术
反渗透海水淡化系统通常采用以下系统流程:自海边取水泵送来的海水,经澄清池(凝聚加药)——贮水箱——清水泵——保安过滤器——超滤升压泵——超滤装置——超滤水箱——超滤水泵——保安过滤器——反渗透升压泵——反渗透装置——淡水箱。海水淡化系统的出水标准可达到工业用水的质量要求。生活用水和锅炉补给水需要另外的水处理系统进行深度除盐处理。
整套系统在国内制造,关键部件如超滤膜、反渗透膜、高压泵组、能量回收装置、仪表等采用进口设备。
-
1)海水预处理
本项目电厂淡水按海水淡化考虑,海水取自循环水泵房前池,由2×DN600的管道输送至海水净化站,经3个处理能力为750 m3/h的斜板沉淀池(2用1备)处理后进入海水淡化车间处理,处理后的淡水加压供全厂工业、生活、消防用水。
2)海水淡化反渗透工艺
经预处理后的海水进入海水淡化车间,采用超滤过滤处理和反渗透脱盐处理。超滤过滤处理使后续的反渗透装置进水的SDI值达到要求;反渗透脱盐处理可脱除海水中的绝大部分溶解物质及有机物,经一级反渗透装置其出水质量可满足工业用水标准,二级反渗透装置出水质量可作为锅炉补给水处理系统进水及生活用水。
-
两种淡水水源方案的技术比较详见表2。
方案 优点 缺点 自来水取水方案 1)工艺成熟,水质稳定,水质较好。
2)无需新建岸边取水建(构)筑物及设备。
3)无需新建原水预处理建(构)筑物及设备。
4)可利用一期已建的山顶水池和输水管道,互为备用。
5)全厂#1~#6机组淡水水源统一运维管理,简单方便,运维费用较低。1)自来水厂距离电厂约22 km,距离较远。
2)需在水厂新建1座自来水提升泵房,新增2台供水泵及配套起吊、排污设备。
3)从供水泵出口新建1条DN800的输水管道,长度约22 km,输水管道沿途条件复杂,工程量大,施工工期长,需解决管道征租地问题。
4)需与当地相关部门协调关系,取得用水协议书。海水淡化方案 1)供水安全可靠性高,出水水质较好。
2)建设工期较短,便于运行维护管理。
3)新建取水管线(海里)短。
4)节省淡水资源,具有良好的社会效益。1)初期投资费用较大。
2)运行维护工作量大,运行费用高。
3)制水成本高。Table 2. Technical comparison between the two fresh water supply schemes
从表2技术比较来看,两种淡水水源方案从技术角度均是可行的,各有优缺点。
-
两种淡水水源方案的投资估算详见表3。
项目 自来水取水
方案海水反渗透
方案备注 土建概算/万元 1 069 1 134 - 征地费用/万元 3 300 - 有一段自来水
取水管设备及安装概算/万元 4 541 10 136 - 合计 8 910 11 270 - Table 3. Comparison of investment estimates between the two fresh water supply schemes
从表3投资估算来看,海水淡化方案投资估算较高。
两种淡水水源方案下的运行费用比较详见表4。
方案 运行成本/(元·t−1) 备注 自来水取水方案 2.80 水价为2.2元/t,考虑可能的输水管道检修维护等。 海水反渗透方案 6.78 考虑海水淡化系统的电费、设备维护修理、换膜、药品等。 Table 4. Comparison of annual operating costs between the two fresh water supply schemes
从上述分析可以看出:
1)设计出力为552 m3/h的反渗透海水淡化系统其工艺设备、控制投资总费用约11 270万元,淡水制水运行成本(包括设备维修、维护,化学药品消耗、电耗、膜更换、人工等)约为6.78元/t水。
2)采用自来水取水方案时,投资总费用为8 910万元,自来水运行成本约为2.8元/t。
-
自来水取水方案和海水淡化制水方案均可作为项目水源。自来水取水方案成本较低,但是存在水源距电厂较远、可能存在征地等问题。海水淡化方案虽然节省淡水资源,具有良好的社会效益,但投资较大,运行维护工作量大,运行费用较高,供水成本高。
在项目周边有充足的自来水水源的情况下,经综合比较推荐采用自来水作为电厂的淡水水源。
Discussion on Fresh Water Acquisition Scheme for 2×1 000 MW Coal-Fired Power Plant
doi: 10.16516/j.gedi.issn2095-8676.2023.S1.015
- Received Date: 2023-06-20
- Rev Recd Date: 2023-06-25
- Publish Date: 2023-06-30
-
Key words:
- coastal power plants /
- freshwater supply schemes /
- tap water intake /
- seawater desalination /
- fresh water source
Abstract:
Citation: | WU Mingjun. Discussion on Fresh Water Acquisition Scheme for 2×1 000 MW Coal-Fired Power Plant[J]. SOUTHERN ENERGY CONSTRUCTION, 2023, 10(S1): 94-97. doi: 10.16516/j.gedi.issn2095-8676.2023.S1.015 |