[1] 王树民. 燃煤电厂近零排放综合控制技术及工程应用研究 [D]. 北京: 华北电力大学(北京), 2017.

WANG S M. Research on coal-fired power plants near-zero emission technologies and applications [D]. Beijing: North China Electric Power University (Beijing), 2017.
[2] 环境保护部, 国家发展和改革委员会, 国家能源局. 全面实施燃煤电厂超低排放和节能改造工作方案 [R]. 北京: 环境保护部办公厅, 2015.

Ministry of Ecology and Environment of the People's Republic of China, National Development and Reform Commission, National Energy Administration. Fully implement the ultra-low emission and energy-saving renovation work plan for coal-fired power plants [R]. Beijing: General Office of the Ministry of Ecology and Environment of the People's Republic of China, 2015.
[3] 郭小龙. 煤电厂超临界汽轮机的节能改造 [J]. 机械管理开发, 2021, 36(12): 192-194. DOI:  10.16525/j.cnki.cn14-1134/th.2021.12.079.

GUO X L. Energy saving retrofit of supercritical turbine in coal power plant [J]. Mechanical Management and Development, 2021, 36(12): 192-194. DOI:  10.16525/j.cnki.cn14-1134/th.2021.12.079.
[4] 李发林. 制度管理与高压变频在电厂节能改造中应用 [J]. 中国建材科技, 2019, 28(6): 26-27.

LI F L. Application of system management and high voltage frequency conversion in energy saving reform of power plant [J]. China Building Materials Science & Technology, 2019, 28(6): 26-27.
[5] 冯征超, 李成刚, 区真理. 变频调速技术在电厂节能改造中的应用 [J]. 广东电力, 2006, 19(10): 50-53,72. DOI:  10.3969/j.issn.1007-290X.2006.10.016.

FENG Z C, LI C G, OU Z L. Frequency control technique applied to energy conservation transformation of power plants [J]. Guangdong Electric Power, 2006, 19(10): 50-53,72. DOI:  10.3969/j.issn.1007-290X.2006.10.016.
[6] 王双童. 低碳经济形势下提升燃煤发电企业节能降耗对策 [J]. 江苏电机工程, 2011, 30(2): 66-69. DOI:  10.3969/j.issn.1009-0665.2011.02.019.

WANG S T. Measures for enhancing energy saving of the coal-fired power plants at low-carbon economic situation [J]. Jiangsu Electrical Engineering, 2011, 30(2): 66-69. DOI:  10.3969/j.issn.1009-0665.2011.02.019.
[7] SAHU S G, CHAKRABORTY N, SARKAR P. Coal-biomass co-combustion: An overview [J]. Renewable & Sustainable Energy Reviews, 2014, 39: 575-586. DOI:  10.1016/j.rser.2014.07.106.
[8] WIELGOSIŃSKI G, ŁECHTAŃSKA P, NAMIECIŃSKA O. Emission of some pollutants from biomass combustion in comparison to hard coal combustion [J]. Journal of the Energy Institute, 2017, 90(5): 787-796. DOI:  10.1016/j.joei.2016.06.005.
[9] 国家能源局, 环境保护部. 国家能源局环境保护部关于开展燃煤耦合生物质发电技改试点工作的通知 (国能发电力[2017]75号) [EB/OL]. (2017-11-27) [2022-06-10]. http: //zfxxgk. nea. gov.cn/auto84/201712/t20171204_3065. htm.

National Energy Administration, Ministry of Ecology and Environment of the People's Republic of China. Notice of the Environmental Protection Department of the National Energy Administration on the pilot project of technological upgrading of coal-fired coupled biomass power generation [EB/OL]. (2017-11-27) [2022-06-10]. http: //zfxxgk. nea. gov.cn/auto84/201712/t20171204_3065. htm.
[10] 高金锴, 佟瑶, 王树才, 等. 生物质燃煤耦合发电技术应用现状及未来趋势 [J]. 可再生能源, 2019, 37(4): 501-506. DOI:  10.13941/j.cnki.21-1469/tk.2019.04.005.

GAO J K, TONG Y, WANG S C, et al. The current situation and future development tendency of biomass-coal coupling power generation system [J]. Renewable Energy Resources, 2019, 37(4): 501-506. DOI:  10.13941/j.cnki.21-1469/tk.2019.04.005.
[11] 王一坤, 邓磊, 贾兆鹏, 等. 燃煤机组大比例直接耦合生物质发电对机组影响研究 [J]. 热力发电, 2021, 50(12): 80-91. doi:  10.19666/j.rlfd.202104075

WANG Y K, DENG L, JIA Z P, et al. Influence of large-scale direct coupled biomass power generation on coal-fired units [J]. Thermal Power Generation, 2021, 50(12): 80-91. doi:  10.19666/j.rlfd.202104075
[12] ZHANG J W, ITO T, ISHII H, et al. Numerical investigation on ammonia co-firing in a pulverized coal combustion facility: effect of ammonia co-firing ratio [J]. Fuel, 2020, 267: 117166. DOI:  10.1016/j.fuel.2020.117166.
[13] YOSHIZAKI T. Test of the Co-firing of ammonia and coal at mizushima power station [J]. Journal of the Combustion Society of Japan, 2019, 61(198): 309-312. DOI:  10.20619/jcombsj.61.198_309.
[14] KOBAYASHI H, HAYAKAWA A, SOMARATHNE K D K A, et al. Science and technology of ammonia combustion [J]. Proceedings of the Combustion Institute, 2019, 37(1): 109-133. DOI:  10.1016/j.proci.2018.09.029.
[15] ISHIHARA S, ZHANG J W, ITO T. Numerical calculation with detailed chemistry on ammonia co-firing in a coal-fired boiler: effect of ammonia co-firing ratio on NO emissions [J]. Fuel, 2020, 274: 117742. DOI:  10.1016/j.fuel.2020.117742.
[16] 周上坤, 杨文俊, 谭厚章, 等. 氨燃烧研究进展 [J]. 中国电机工程学报, 2021, 41(12): 4164-4182. DOI:  10.13334/j.0258-8013.pcsee.201476.

ZHOU S K, YANG W J, TAN H Z, et al. Research progress of ammonia combustion [J]. Proceedings of the CSEE, 2021, 41(12): 4164-4182. DOI:  10.13334/j.0258-8013.pcsee.201476.
[17] HADI K, ICHIMURA R, HASHIMOTO G, et al. Effect of fuel ratio of coal on the turbulent flame speed of ammonia/coal particle cloud co-combustion at atmospheric pressure [J]. Proceedings of the Combustion Institute, 2021, 38(3): 4131-4139. DOI:  10.1016/j.proci.2020.06.358.
[18] WANG D, JI C W, WANG Z, et al. Measurement of oxy-ammonia laminar burning velocity at normal and elevated temperatures [J]. Fuel, 2020, 279: 118425. doi:  10.1016/j.fuel.2020.118425
[19] MILLER J A, SMOOKE M D, GREEN R M, et al. Kinetic modeling of the oxidation of ammonia in flames [J]. Combustion Science and Technology, 1983, 34: 149-176. doi:  10.1080/00102208308923691
[20] VALERA-MEDINA A, XIAO H, OWEN-JONES M, et al. Ammonia for power [J]. Progress in Energy and Combustion Science, 2018, 69: 63-102. DOI:  10.1016/j.pecs.2018.07.001.
[21] SHIH C F, ZHANG T, LI J H, et al. Powering the future with liquid sunshine [J]. Joule, 2018, 2(10): 1925-1949. DOI:  10.1016/j.joule.2018.08.016.
[22] Service R F. Liquid sunshine [J]. Science, 2018, 361(6398): 120-123. DOI:  10.1126/science.361.6398.120.
[23] ISHIHARA S, ZHANG J W, ITO T. Numerical calculation with detailed chemistry of effect of ammonia co-firing on NO emissions in a coal-fired boiler [J]. Fuel, 2020, 266: 116924. DOI:  10.1016/j.fuel.2019.116924.
[24] 国家环境保护局. 燃煤电厂大气污染物排放标准: GB 13223—1991 [S]. 北京: 国家技术监督局, 国家环境保护局, 1992.

National Environmental Protection Agency. Emission standards of air pollutants for coal-fired power plants: GB 13223—1991 [S]. Beijing: The State Bureau of Quality and Technical Supervision, National Environmental Protection Agency, 1992.
[25] 王建秀, 吴远斌, 于海鹏. 二氧化碳封存技术研究进展 [J]. 地下空间与工程学报, 2013, 9(1): 81-90.

WANG J X, WU Y B, YU H P. Review of the technology for sequestration of carbon dioxide [J]. Chinese Journal of Underground Space and Engineering, 2013, 9(1): 81-90.
[26] 骆仲泱, 方梦祥, 李明远, 等. 二氧化碳捕集、封存和利用技术 [M]. 北京: 中国电力出版社, 2012: 261-279.

LUO Z Y, FANG M X, LI M Y, et al. Carbon dioxide capture, storage and utilization technology [M]. Beijing: China Electric Power Press, 2012: 261-279.
[27] 黄定国, 杨小林, 余永强, 等. CO2地质封存技术进展与废弃矿井采空区封存CO2 [J]. 洁净煤技术, 2011, 17(5): 93-96. DOI:  10.13226/j.issn.1006-6772.2011.05.034.

HUANG D G, YANG X L, YU Y Q, et al. Technical progress of CO2 geological sequestration and CO2 sequestration by antiquated mine goaf [J]. Clean Coal Technology, 2011, 17(5): 93-96. DOI:  10.13226/j.issn.1006-6772.2011.05.034.
[28] 姜凯, 李治平, 窦宏恩, 等. 沁水盆地二氧化碳埋存潜力评价模型 [J]. 特种油气藏, 2016, 23(2): 112-114. DOI:  10.3969/j.issn.1006-6535.2016.02.027.

JIANG K, LI Z P, DOU H E, et al. Evaluation model of CO2 storage potential in Qinshui Basin [J]. Special Oil & Gas Reservoirs, 2016, 23(2): 112-114. DOI:  10.3969/j.issn.1006-6535.2016.02.027.
[29] 王双明, 申艳军, 孙强, 等. “双碳”目标下煤炭开采扰动空间CO2地下封存途径与技术难题探索 [J]. 煤炭学报, 2022, 47(1): 45-60. DOI:  10.13225/j.cnki.jccs.yg21.1872.

WANG S M, SHEN Y J, SUN Q, et al. Underground CO2 storage and technical problems in coal mining area under the "dual carbon" target [J]. Journal of China Coal Society, 2022, 47(1): 45-60. DOI:  10.13225/j.cnki.jccs.yg21.1872.
[30] AGBOR E, ZHANG X L, KUMAR A. A review of biomass co-firing in North America [J]. Renewable and Sustainable Energy Reviews, 2014, 40: 930-943. DOI:  10.1016/j.rser.2014.07.195.
[31] 秦阿宁, 吴晓燕, 李娜娜, 等. 国际碳捕集、利用与封存(CCUS)技术发展战略与技术布局分析 [J]. 科学观察, 2022, 17(4): 29-32. DOI:  10.15978/j.cnki.1673-5668.202204008.

QIN A N, WU X Y, LI N N, et al. Analysis on international strategy and technology development of carbon capture [J]. Science Focus, 2022, 17(4): 29-32. DOI:  10.15978/j.cnki.1673-5668.202204008.
[32] 方梦祥, 周旭萍, 王涛, 等. CO2化学吸收剂 [J]. 化学进展, 2015, 27(12): 1808-1814. DOI:  10.7536/PC150638.

FANG M X, ZHOU X P, WANG T, et al. Solvent development in CO2 chemical absorption [J]. Progress in Chemistry, 2015, 27(12): 1808-1814. DOI:  10.7536/PC150638.
[33] 汪世清, 郜时旺, 王绍民, 等. 低温洗涤法烟气脱硫脱碳工艺模拟研究 [J]. 热力发电, 2021, 50(1): 68-73. DOI:  10.19666/j.rlfd.202007202.

WANG S Q, GAO S W, WANG S M, et al. Simulation study on removing SO2 and CO2 from flue gas by cryogenic scrubbing [J]. Thermal Power Generation, 2021, 50(1): 68-73. DOI:  10.19666/j.rlfd.202007202.
[34] HE X Z, HÄGG M B. Hollow fiber carbon membranes: Investigations for CO2 capture [J]. Journal of Membrane Science, 2011, 378(1/2): 1-9. DOI:  10.1016/j.memsci.2010.10.070.
[35] 李新春, 孙永斌. 二氧化碳捕集现状和展望 [J]. 能源技术经济, 2010, 22(4): 21-26. DOI:  10.3969/j.issn.1674-8441.2010.04.004.

LI X C, SUN Y B. Status quo and prospect of the carbon dioxide capture [J]. Energy Technology and Economics, 2010, 22(4): 21-26. DOI:  10.3969/j.issn.1674-8441.2010.04.004.
[36] 全球碳捕集与封存研究院. 全球碳捕集与封存现状报告2020 [R/OL]. (2021-01-22) [2022-06-10]. https://cn.globalccsinstitute.com/resources/publications-reports-research/global-status-of-ccs-2020/.

Global CCS Institute. Global Status of CCS 2020 [R/OL]. (2021-01-22) [2022-06-10]. https://cn.globalccsinstitute.com/resources/publications-reports-research/global-status-of-ccs-2020/.
[37] WANG M H, JOEL A S, RAMSHAW C, et al. Process intensification for post-combustion CO2 capture with chemical absorption: a critical review [J]. Applied Energy, 2015, 158: 275-291. DOI:  10.1016/j.apenergy.2015.08.083.
[38] ABU-ZAHRA M R M, SCHNEIDERS L H J, NIEDERER J P M, et al. CO2 capture from power plants: part I. A parametric study of the technical performance based on monoethanolamine [J]. International Journal of Greenhouse Gas Control, 2007, 1(1): 37-46. DOI:  10.1016/s1750-5836(06)00007-7.
[39] 李青, 余云松, 姜钧, 等. 一种改进的二氧化碳吸收减排法 [J]. 西安交通大学学报, 2008, 42(11): 1413-1417. DOI:  10.3321/j.issn:0253-987X.2008.11.021.

LI Q, YU Y S, JIANG J, et al. Improved CO2 capture method by absorption [J]. Journal of Xi'an Jiaotong University, 2008, 42(11): 1413-1417. DOI:  10.3321/j.issn:0253-987X.2008.11.021.
[40] 李青, 余云松, 姜钧, 等. 基于热泵技术的化学吸收法二氧化碳捕集系统 [J]. 高校化学工程学报, 2010, 24(1): 29-34. DOI:  10.3969/j.issn.1003-9015.2010.01.006.

LI Q, YU Y S, JIANG J, et al. CO2 capture by chemical absorption method based on heat pump technology [J]. Journal of Chemical Engineering of Chinese Universities, 2010, 24(1): 29-34. DOI:  10.3969/j.issn.1003-9015.2010.01.006.
[41] 高书宝, 张文燕, 王泽江, 等. 二氧化碳的捕集分离与烟气脱钙技术的应用现状 [J]. 盐科学与化工, 2019, 48(8): 1-6. DOI:  10.16570/j.cnki.issn1673-6850.2019.08.001.

GAO S B, ZHANG W Y, WANG Z J, et al. Application status of carbon dioxide capture-separation and decalcification by flue gas technology [J]. Journal of Salt Science and Chemical Industry, 2019, 48(8): 1-6. DOI:  10.16570/j.cnki.issn1673-6850.2019.08.001.
[42] 赵雪, 芮久后, 王宇, 等. 探讨适合中国的CO2捕集技术 [J]. 科技导报, 2010, 28(4): 97-100.

ZHAO X, RUI J H, WANG Y, et al. A study on CO2 capture technology in China [J]. Science & Technology Review, 2010, 28(4): 97-100.
[43] 徐冬, 张军, 翟玉春, 等. 变压吸附分离工业废气中二氧化碳的研究进展 [J]. 化工进展, 2010, 29(1): 150-156. DOI:  10.16085/j.issn.1000-6613.2010.01.028.

XU D, ZHANG J, ZHAI Y C, et al. Progress in carbon dioxide capture from flue gas by pressure swing adsorption [J]. Chemical Industry and Engineering Progress, 2010, 29(1): 150-156. DOI:  10.16085/j.issn.1000-6613.2010.01.028.
[44] LANGSTON M V, HOADLEY S F, YOUNG D N. Definitive CO2 flooding response in the SACROC unit [C]//SPE. Proceedings of SPE Enhanced Oil Recovery Symposium, Tulsa, Oklahoma, April 16-21, 1988. Tulsa: SPE, 2007: 1-16.
[45] 龚蔚, 蒲万芬, 曹建. 就地生成二氧化碳提高采收率研究 [J]. 特种油气藏, 2008, 15(6): 76-78. DOI:  10.3969/j.issn.1006-6535.2008.06.022.

GONG W, PU W F, CAO J. Enhance oil recovery by in-situ carbon dioxide generation [J]. Special Oil and Gas Reservoirs, 2008, 15(6): 76-78. DOI:  10.3969/j.issn.1006-6535.2008.06.022.
[46] 刘飞, 关键, 祁志福, 等. 燃煤电厂碳捕集、利用与封存技术路线选择 [J]. 华中科技大学学报(自然科学版), 2022, 50(7): 1-13. DOI:  10.13245/j.hust.220701.

LIU F, GUAN J, QI Z F, et al. Technology route selection for carbon capture utilization and storage in coal-fired power plants [J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2022, 50(7): 1-13. DOI:  10.13245/j.hust.220701.
[47] CHEN K K, HAN Y, ZHANG Z E, et al. Enhancing membrane performance for CO2 capture from flue gas with ultrahigh MW polyvinylamine [J]. Journal of Membrane Science, 2021, 628: 119215. DOI:  10.1016/J.MEMSCI.2021.119215.
[48] WU D Z, SUN C H, DUTTA P K, et al. SO2 interference on separation performance of amine-containing facilitated transport membranes for CO2 capture from flue gas [J]. Journal of Membrane Science, 2017, 534: 33-45. DOI:  10.1016/j.memsci.2017.04.003.
[49] DENG L Y, KIM T J, HÄGG M B. Facilitated transport of CO2 in novel PVAm/PVA blend membrane [J]. Journal of Membrane Science, 2009, 340: 154-163. DOI:  10.1016/j.memsci.2009.05.019.
[50] QIAN Z H, WANG Z, ZHANG C X, et al. PVAm–PIP/PS Composite membrane with high performance for CO2/N2 separation [J]. AIChE Journal, 2013, 59(1): 215-228. DOI:  10.1002/aic.13781.
[51] 胡建根, 童家麟, 茅建波, 等. 典型燃煤锅炉深度调峰能力比较研究 [J]. 锅炉技术, 2019, 50(6): 59-64. DOI:  10.3969/j.issn.1672-4763.2019.06.012.

HU J G, TONG J L, MAO J B, et al. The research of the comparision of deep peak regulation capacity for typical coal-fired boilers [J]. Boiler Technology, 2019, 50(6): 59-64. DOI:  10.3969/j.issn.1672-4763.2019.06.012.
[52] 丛星亮, 谢红, 苏阳, 等. 660 MW超超临界二次再热机组深度调峰试验研究 [J]. 华电技术, 2021, 43(5): 64-69. DOI:  10.3969/j.issn.1674-1951.2021.05.010.

CONG X L, XIE H, SU Y, et al. Experimental study on deep peak-load shaving of a 660 MW ultra-supercritical secondary reheating unit [J]. Huadian Technology, 2021, 43(5): 64-69. DOI:  10.3969/j.issn.1674-1951.2021.05.010.
[53] 孙立本, 张少成, 许冰, 等. 66 kV固体电蓄热装置在火电机组深度调峰中的应用 [J]. 华电技术, 2018, 40(7): 38-39,42. DOI:  10.3969/j.issn.1674-1951.2018.07.011.

SUN L B, ZHANG S C, XU B, et al. Application of 66 kV solid electric heat storage device in vigorous peak-load regulation of thermal power units [J]. Huadian Technology, 2018, 40(7): 38-39,42. DOI:  10.3969/j.issn.1674-1951.2018.07.011.
[54] 童家麟, 洪庆, 吕洪坤, 等. 电源侧储能技术发展现状及应用前景综述 [J]. 华电技术, 2021, 43(7): 17-23. DOI:  10.3969/j.issn.1674-1951.2021.07.003.

TONG J L, HONG Q, LÜ H K, et al. Review on development status and application prospect of power side energy storage technology [J]. Huadian Technology, 2021, 43(7): 17-23. DOI:  10.3969/j.issn.1674-1951.2021.07.003.
[55] MAHMOUD M, RAMADAN M, OLABI A G, et al. A review of mechanical energy storage systems combined with wind and solar applications [J]. Energy Conversion and Management, 2020, 210: 112670. DOI:  10.1016/j.enconman.2020.112670.
[56] 薛飞宇, 梁双印. 飞轮储能核心技术发展现状与展望 [J]. 节能, 2020, 39(11): 119-122. DOI:  10.3969/j.issn.1004-7948.2020.11.037.

XUE F Y, LIANG S Y. Development status and prospect of core technology of flywheel energy storage system [J]. Energy Conservation, 2020, 39(11): 119-122. DOI:  10.3969/j.issn.1004-7948.2020.11.037.
[57] KALDELLIS J K, ZAFIRAKIS D. Optimum energy storage techniques for the improvement of renewable energy sources-based electricity generation economic efficiency [J]. Energy, 2007, 32(12): 2295-2305. DOI:  10.1016/j.energy.2007.07.009.
[58] 陈利平. 电力生产安全事故统计与分析 [J]. 电力设备管理, 2021(4): 106-108.

CHEN L P. Statistics and analysis of safety accidents in electric power production [J]. Electric Power Equipment Management, 2021(4): 106-108.
[59] 刘文毅, 杨勇平, 张昔国, 等. 压缩空气蓄能(CAES)电站及其现状和发展趋势 [J]. 山东电力技术, 2007(2): 10-14. DOI:  10.3969/j.issn.1007-9904.2007.02.003.

LIU W Y, YANG Y P, ZHANG X G, et al. Present situation and development trend of compressed air energy storage (CAES) power plant [J]. Shandong Electric Power, 2007(2): 10-14. DOI:  10.3969/j.issn.1007-9904.2007.02.003.
[60] 张雨檬. 可逆固体氧化物燃料电池-储能系统概念设计与应用场景识别 [D]. 北京: 华北电力大学(北京), 2021. DOI: 10.27140/d.cnki.ghbbu.2021.000032.

ZHANG Y M. Conceptual design and applications identification of reversible solid oxide cell stack based energy storage system [D]. Beijing: North China Electric Power University (Beijing), 2021. DOI: 10.27140/d.cnki.ghbbu.2021.000032.
[61] 朱冕, 赵加佩, 李欣珂, 等. 可逆固体氧化物燃料电池(rSOFC)技术的研究进展 [J]. 电源技术, 2020, 44(3): 469-474. DOI:  10.3969/j.issn.1002-087X.2020.03.040.

ZHU M, ZHAO J P, LI X K, et al. Research status and prospects of reversible solid oxide fuel cell (rSOFC) technology [J]. Chinese Journal of Power Sources, 2020, 44(3): 469-474. DOI:  10.3969/j.issn.1002-087X.2020.03.040.
[62] KUSKO A, DEDAD J. Stored energy short-term and long-term energy storage methods [J]. IEEE Industry Applications Magazine, 2007, 13(4): 66-72. DOI:  10.1109/MIA.2007.4283511.
[63] NAGAYA S, HIRANO N, ADACHI E, et al. Development of cost-reduction SMES for load fluctuation compensation and frequency control [J]. Journal of the Cryogenic Society of Japan, 2005, 40(5): 159-166. DOI:  10.2221/jcsj.40.159.
[64] ZHU J H, CHEN P P, GU C H, et al. Techno-economic analysis of MJ class high temperature Superconducting Magnetic Energy Storage (SMES) systems applied to renewable power grids [J]. Global Energy Interconnection, 2018, 1(2): 172-178. DOI:  10.14171/j.2096-5117.gei.2018.02.011.
[65] BECK F, RÜETSCHI P. Rechargeable batteries with aqueous electrolytes [J]. Electrochimica Acta, 2000, 45: 2467-2482. DOI:  10.1016/S0013-4686(00)00344-3.
[66] LUO X, WANG J H, DOONER M, et al. Overview of current development in electrical energy storage technologies and the application potential in power system operation [J]. Applied Energy, 2015, 137: 511-536. DOI:  10.1016/j.apenergy.2014.09.081.
[67] 姚少勇, 王宝良, 李英. 锅炉等离子点火与气化微油点火技术的安全性分析 [J]. 河北电力技术, 2008(4): 28-30. DOI:  10.3969/j.issn.1001-9898.2008.04.011.

YAO S Y, WANG B L, LI Y. Safety analysis on plasma and gasification micro-diesel ignition technology of the boiler [J]. Hebei Electric Power, 2008(4): 28-30. DOI:  10.3969/j.issn.1001-9898.2008.04.011.
[68] 王鑫明, 王庆, 寻志伟, 等. 应用富氧燃烧技术提高火电机组调峰能力 [J]. 上海电气技术, 2019, 12(2): 19-22. DOI:  10.3969/j.issn.1674-540X.2019.02.006.

WANG X M, WANG Q, XUN Z W, et al. Application of oxygen-enriched combustion technology for enhancement of peaking capability of thermal power sets [J]. Journal of Shanghai Electric Technology, 2019, 12(2): 19-22. DOI:  10.3969/j.issn.1674-540X.2019.02.006.
[69] 罗聪. 深度调峰工况下锅炉燃烧优化控制 [D]. 北京: 华北电力大学, 2020. DOI:  10.27139/d.cnki.ghbdu.2020.000491.

LUO C. Optimal control of boiler combustion under deep peak load regulation [D]. Beijing: North China Electric Power University, 2020. DOI:  10.27139/d.cnki.ghbdu.2020.000491.
[70] WU X, SHEN J, LI Y G, et al. Fuzzy modeling and stable model predictive tracking control of large-scale power plants [J]. Journal of Process Control, 2014, 24(10): 1609-1626. DOI:  10.1016/j.jprocont.2014.08.007.
[71] 江忆. 光储直柔−助力实现零碳电力的新型建筑配电系统 [J]. 暖通空调, 2021, 51(10): 1-12.

JIANG Y. PSDF (Photovoltaic, Storage, DC, Flexible)-A new type of building power distribution system for zero carbon power system [J]. Heating Ventilating & Air Conditioning, 2021, 51(10): 1-12.
[72] 李永刚, 韩冰. 低压直流配电系统保护研究综述 [J]. 华北电力大学学报, 2020, 47(1): 17-23+41. DOI:  10.3969/j.ISSN.1007-2691.2020.01.03.

LI Y G, HAN B. Review on protection of LVDC distribution system research [J]. Journal of North China Electric Power University, 2020, 47(1): 17-23+41. DOI:  10.3969/j.ISSN.1007-2691.2020.01.03.
[73] 马钊, 安婷, 尚宇炜. 国内外配电前沿技术动态及发展 [J]. 中国电机工程学报, 2016, 33(6): 1552-1567+1768. DOI:  10.13334/j.0258-8013.pcsee.2016.06.011.

MA Z, AN T, SHANG Y W. State of the art and development trends of power distribution technologies [J]. Proceedings of the CSEE, 2016, 33(6): 1552-1567+1768. DOI:  10.13334/j.0258-8013.pcsee.2016.06.011.
[74] 杜彦缤, 杜兆文, 吕恒琪. 直流配电系统可行性研究 [J]. 电子技术与软件工程, 2015(9): 119.

DU Y B, DU Z W, LÜ H Q. Feasibility study of DC power distribution system [J]. Electronic Technology & Software Engineering, 2015(9): 119.