[1] 徐龙博, 李煜东, 汪少勇, 等. 海上风电场数字化发展设想 [J]. 电力系统自动化, 2014, 38(3): 189-193,199. DOI:  10.7500/AEPS20130613018.

XU L B, LI Y D, WANG S Y, et al. Digital development assumptions of offshore wind farms [J]. Automation of electric power systems, 2014, 38(3): 189-193,199. DOI:  10.7500/AEPS20130613018.
[2] 杨建军, 俞华锋, 赵生校, 等. 海上风电场升压变电站设计基本要求的研究 [J]. 中国电机工程学报, 2016, 36(14): 3781-3788. DOI:  10.13334/j.0258-8013.pcsee.152761.

YANG J J, YU H F, ZHAO S X, et al. Research on basic requirements of offshore substation design [J]. Proceedings of the CSEE, 2016, 36(14): 3781-3788. DOI:  10.13334/j.0258-8013.pcsee.152761.
[3] 张振, 杨源, 阳熹. 海上风电机组辅助监控系统方案设计 [J]. 南方能源建设, 2019, 6(1): 49-54. DOI:  10.16516/j.gedi.issn2095-8676.2019.01.009.

ZHANG Z, YANG Y, YANG X. Design of offshore wind farm auxiliary monitoring system [J]. Southern energy construction, 2019, 6(1): 49-54. DOI:  10.16516/j.gedi.issn2095-8676.2019.01.009.
[4] 周冰. 海上风电机组智能故障预警系统研究 [J]. 南方能源建设, 2018, 5(2): 133-137. DOI:  10.16516/j.gedi.issn2095-8676.2018.02.019.

ZHOU B. Research on intelligent fault warning system of offshore wind turbines [J]. Southern energy construction, 2018, 5(2): 133-137. DOI:  10.16516/j.gedi.issn2095-8676.2018.02.019.
[5] 汤东升. 海上风电大数据分析技术及应用前景初探 [J]. 南方能源建设, 2018, 5(2): 65-66. DOI:  10.16516/j.gedi.issn2095-8676.2018.02.008.

TANG D S. Preliminary study on the big data technology and its application prospect for offshore wind farm [J]. Southern energy construction, 2018, 5(2): 65-66. DOI:  10.16516/j.gedi.issn2095-8676.2018.02.008.
[6] 国家能源局. 风电场工程110 kV~220 kV海上升压变电站设计规范: NB/T 31115-2017 [S]. 北京: 中国电力出版社, 2018.

National Energy Administration. Code for 110 kV~220 kV offshore substation design of wind power projects: NB/T 31115-2017 [S]. Beijing: China Electric Power Press, 2018.
[7] 黄玲玲, 曹家麟, 张开华, 等. 海上风电机组运行维护现状研究与展望 [J]. 中国电机工程学报, 2016, 36(3): 729-738. DOI:  10.13334/j.0258-8013.pcsee.2016.03.017.

HUANG L L, CAO J L, ZHANG K H, et al. Status and prospects on operation and maintenance of offshore wind turbines [J]. Proceedings of the CSEE, 2016, 36(3): 729-738. DOI:  10.13334/j.0258-8013.pcsee.2016.03.017.
[8] 张志宏, 施永吉, 黄建平, 等. 深远海域风电场智慧运维管理系统的探索与研究 [J]. 太阳能, 2018(6): 49-53,25. DOI:  10.3969/j.issn.1003-0417.2018.06.011.

ZHANG Z H, SHI Y J, HUANG J P, et al. Exploration and research on the intelligent operation and maintenance management system of deep sea wind farm [J]. Solar energy, 2018(6): 49-53,25. DOI:  10.3969/j.issn.1003-0417.2018.06.011.
[9] 裴爱国, 何登富. 海上风电大数据发展研究——以广东省海上风电大数据中心建设为例 [J]. 南方能源建设, 2018, 5(2): 19-23. DOI:  10.16516/j.gedi.issn2095-8676.2018.02.003.

PEI A G, HE D F. Research on the development of big data with offshore wind power: a case study of the construction of Guangdong offshore wind farm big data center [J]. Southern energy construction, 2018, 5(2): 19-23. DOI:  10.16516/j.gedi.issn2095-8676.2018.02.003.
[10] 郑钊颖, 冯奕敏. 广东海上风电产业发展路径与对策研究 [J]. 南方能源建设, 2020, 7(4): 18-25. DOI:  10.16516/j.gedi.issn2095-8676.2020.04.003.

ZHENG Z Y, FENG Y M. Research on the development approach and policy recommendations of Guangdong offshore wind power industry [J]. Southern energy construction, 2020, 7(4): 18-25. DOI:  10.16516/j.gedi.issn2095-8676.2020.04.003.
[11] 房方, 梁栋炀, 刘亚娟, 等. 海上风电智能控制与运维关键技术 [J]. 发电技术, 2022, 43(2): 175-185. DOI:  10.12096/j.2096-4528.pgt.22042.

FANG F, LIANG D Y, LIU Y J, et al. Key technologies for intelligent control and operation and maintenance of offshore wind power [J]. Power generation technology, 2022, 43(2): 175-185. DOI:  10.12096/j.2096-4528.pgt.22042.
[12] 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 风力发电机组 设计要求: GB/T 18451.1-2012 [S]. 北京: 中国标准出版社, 2012.

General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, Standardization Administration of the People's Republic of China. Wind turbine generator systems-design requirements: GB/T 18451.1-2012 [S]. Beijing: China Standards Press, 2012.
[13] 崔金鹏, 张波, 田志磊, 等. 无线通信技术在海上风电工程中的应用 [J]. 信息技术与信息化, 2022(1): 141-144. DOI:  10.3969/j.issn.1672-9528.2022.01.039.

CUI J P, ZHANG B, TIAN Z L, et al. Application of wireless communication technology in offshore wind power engineering [J]. Information technology and informatization, 2022(1): 141-144. DOI:  10.3969/j.issn.1672-9528.2022.01.039.
[14] 王靛, 文坤, 胡凯凯, 等. 新基建时代风电场智能运维技术的发展与展望 [J]. 控制与信息技术, 2021(5): 6-11. DOI:  10.13889/j.issn.2096-5427.2021.05.002.

WANG D, WEN K, HU K K, et al. Development and prospect of wind power intelligent operation and maintenance technologies in the new infrastructure era [J]. Control and information technology, 2021(5): 6-11. DOI:  10.13889/j.issn.2096-5427.2021.05.002.
[15] 陈晓露, 夏天. 5G通信环境下虚拟电厂分布式能源调度方法研究 [J]. 微型电脑应用, 2022, 38(9): 138-140. DOI:  10.3969/j.issn.1007-757X.2022.09.039.

CHEN X L, XIA T. Research on distributed energy scheduling method of virtual power plant in 5G communication environment [J]. Microcomputer applications, 2022, 38(9): 138-140. DOI:  10.3969/j.issn.1007-757X.2022.09.039.
[16] 张亮亮. 通信系统在电厂工程的应用 [J]. 集成电路应用, 2021, 38(8): 110-111. DOI:  10.19339/j.issn.1674-2583.2021.08.046.

ZHANG L L. Application of communication system in power plant engineering [J]. Applications of IC, 2021, 38(8): 110-111. DOI:  10.19339/j.issn.1674-2583.2021.08.046.
[17] 孔英会, 高会生, 张铁峰, 等. 面向虚拟电厂的5G通信技术应用探讨 [J]. 电力信息与通信技术, 2020, 18(8): 80-85. DOI:  10.16543/j.2095-641x.electric.power.ict.2020.08.011.

KONG Y H, GAO H S, ZHANG T F, et al. Discussion on application of 5G communication technology for virtual power plants [J]. Electric power information and communication technology, 2020, 18(8): 80-85. DOI:  10.16543/j.2095-641x.electric.power.ict.2020.08.011.
[18] 韩新. 风电厂海陆一体集控中心通信网络建设 [J]. 通信电源技术, 2020, 37(4): 215-217. DOI:  10.19399/j.cnki.tpt.2020.04.093.

HAN X. Construction of communication network of integrated control center for sea and land of wind power plant [J]. Telecom power technology, 2020, 37(4): 215-217. DOI:  10.19399/j.cnki.tpt.2020.04.093.
[19] 张宪宝. 电厂电力通信系统的完善与优化 [J]. 电力安全技术, 2019, 21(5): 50-52. DOI:  10.3969/j.issn.1008-6226.2019.05.014.

ZHANG X B. Improvement and optimization of power communication system in power plant [J]. Electric safety technology, 2019, 21(5): 50-52. DOI:  10.3969/j.issn.1008-6226.2019.05.014.
[20] 宋彬彬, 赵延青. 基于IEC61850通信协议的电厂智能化监控系统 [J]. 黑龙江电力, 2017, 39(2): 162-165,177. DOI:  10.13625/j.cnki.hljep.2017.02.015.

SONG B B, ZHAO Y Q. Intelligent supervisory system in power plant based on IEC61850 communication protocol [J]. Heilongjiang electric power, 2017, 39(2): 162-165,177. DOI:  10.13625/j.cnki.hljep.2017.02.015.
[21] 张亮, 华荣锦, 孙寅. 浅析提高新能源电厂通信业务安全可靠性的措施 [J]. 科技视界, 2016(4): 262, 279. DOI:  10.19694/j.cnki.issn2095-2457.2016.04.203.

ZHANG L, HUA R J, SUN Y. Analysis of the measures of improving the reliability and security of the communication service in new energy power plant [J]. Science & technology vision, 2016(4): 262, 279. DOI:  10.19694/j.cnki.issn2095-2457.2016.04.203.
[22] 田学成, 张五一, 江楠, 等. 基于Modbus协议新能源风电网络通信安全研究 [J]. 网络安全与数据治理, 2022, 41(8): 61-67. DOI:  10.20044/j.csdg.2097-1788.2022.02.010.

TIAN X C, ZHANG W Y, JIANG N, et al. Research on communication boundary security of new energy wind power network based on Modbus protocol [J]. Cyber security and data governance, 2022, 41(8): 61-67. DOI:  10.20044/j.csdg.2097-1788.2022.02.010.
[23] 周晓炅. 考虑变化通信时滞的风电机组试验台稳定性分析与转动惯量补偿策略 [D]. 南京: 南京理工大学, 2022. DOI:  10.27241/d.cnki.gnjgu.2021.003574.

ZHOU X J. Stability analysis and inertia compensation scheme of wind turbine test bench considering variable communication delay [D]. Nanjing: Nanjing University of Science and Technology, 2022. DOI:  10.27241/d.cnki.gnjgu.2021.003574.
[24] 郭俊宸, 赵慧丽, 顾开祥. 基于风电机组监控安全通信的系统设计 [J]. 电子制作,2022, 30(4): 6-9. DOI:  10.16589/j.cnki.cn11-3571/tn.2022.04.006.

GUO J C, ZHAO H L, GU K X. System design based on wind turbine monitoring safety communication [J]. Practical electronics, 2022, 30(4): 6-9. DOI:  10.16589/j.cnki.cn11-3571/tn.2022.04.006.
[25] 中华人民共和国住房和城乡建设部, 国家市场监督管理总局. 海上风力发电场设计标准: GB/T 51308-2019 [S]. 北京: 中国计划出版社, 2019.

Ministry of Housing and Urban-Rural Development of the People's Republic of China, State Administration for Market Regulation. Standard for design of offshore wind farm: GB/T 51308-2019 [S]. Beijing: China Planning Press, 2019.
[26] 杨源, 阳熹, 汪少勇, 等. 海上风电场智能船舶调度及人员管理系统 [J]. 南方能源建设, 2020, 7(1): 47-52. DOI:  10.16516/j.gedi.issn2095-8676.2020.01.007.

YANG Y, YANG X, WANG S Y, et al. Scheme design of intelligent vessel dispatching and personnel management system for offshore wind farm [J]. Southern energy construction, 2020, 7(1): 47-52. DOI:  10.16516/j.gedi.issn2095-8676.2020.01.007.
[27] 杨源, 陈亮, 王小虎, 等. 海上风电-氢能综合能源监控系统设计 [J]. 南方能源建设, 2020, 7(2): 35-40. DOI:  10.16516/j.gedi.issn2095-8676.2020.02.005.

YANG Y, CHEN L, WANG X H, et al. Design of integrated offshore wind power-hydrogen energy monitoring system [J]. Southern energy construction, 2020, 7(2): 35-40. DOI:  10.16516/j.gedi.issn2095-8676.2020.02.005.
[28] 曹鹏, 熊圣新, 李建科, 等. 基于5G无线网络的风电机组监控系统组网研究 [J]. 船舶工程, 2020, 42(增刊2): 260-264. DOI:  10.13788/j.cnki.cbgc.2020.S2.050.

CAO P, XIONG S X, LI J K, et al. Research on wind turbine monitoring system networking based on 5G wireless network [J]. Ship engineering, 2020, 42(Suppl.2): 260-264. DOI:  10.13788/j.cnki.cbgc.2020.S2.050.
[29] 谭亮. 基于新型5G室分通信的远程监控系统应用 [J]. 通信与信息技术, 2023(3): 103-105.

TAN L. Application of remote monitoring system based on new 5G indoor communication [J]. Communication & information technology, 2023(3): 103-105.
[30] 吴文斌, 杨泽辉. 5G移动通信中的关键技术进展 [J]. 电子技术, 2023, 52(5): 218-219.

WU W B, YANG Z H. Progress of key technologies in 5G mobile communication [J]. Electronic technology, 2023, 52(5): 218-219.
[31] 毛安家, 张丽婧, 盛倩倩. 考虑通信可靠性的5G基站储能聚合商优化调度研究 [J]. 电工技术学报, 2023, 38(9): 2364-2374. DOI:  10.19595/j.cnki.1000-6753.tces.220148.

MAO A J, ZHANG L J, SHENG Q Q. Research on optimal scheduling of 5G base station energy storage aggregators considering communication reliability [J]. Transactions of China electrotechnical society, 2023, 38(9): 2364-2374. DOI:  10.19595/j.cnki.1000-6753.tces.220148.