[1] BRAUNS J, TUREK T. Alkaline water electrolysis powered by renewable energy: a review [J]. Processes, 2020, 8(2): 248. DOI:  10.3390/pr8020248.
[2] ZHANG F, ZHAO P C, NIU M, et al. The survey of key technologies in hydrogen energy storage [J]. International journal of hydrogen energy, 2016, 41(33): 14535-14552. DOI:  10.1016/j.ijhydene.2016.05.293.
[3] DAHBI S, MAZOZI I, EL OUARIACHI M, et al. Implementation of a multi-control architecture in a photovoltaic/grid/electrolysis system for usual use and clean storage by hydrogen production [J]. International journal of renewable energy research, 2017, 7(4): 1825-1835. DOI:  10.20508/ijrer.v7i4.6275.g7226.
[4] MANDAL B, SIRKAR A, SHAU A, et al. Effects of geometry of electrodes and pulsating DC input on water splitting for production of hydrogen [J]. International journal of renewable energy research, 2012, 2(1): 99-102. DOI:  10.1097/00005344-199000153-00003.
[5] BILGIN O. Evaluation of hydrogen energy production of mining waste waters and pools [C]//Proceedings of the International Conference on Renewable Energy Research and Applications, Palermo, Italy, November 22-25, 2015. Palermo: IEEE, 2015: 557-561.
[6] KOIWA K, TAKAHASHI R, TAMURA J. A study of hydrogen production in stand-alone wind farm [C]//IEEE Power Electronics Society (PELS). Proceedings of the International Conference on Renewable Energy Research and Applications, Nagasaki, Japan, November 11-14, 2012. Nagasaki: IEEE, 2012: 1-6.
[7] MARTINEZ D, ZAMORA R. MATLAB SIMSCAPE model of an alkaline electrolyser and its simulation with a directly coupled PV module [J]. International journal of renewable energy research, 2018, 8(1): 552-560.
[8] GARCÍA-VALVERDE R, MIGUEL C, MARTÍNEZ-BÉJAR R, et al. Optimized photovoltaic generator-water electrolyser coupling through a controlled DC-DC converter [J]. International journal of hydrogen energy, 2008, 33(20): 5352-5362. DOI:  10.1016/j.ijhydene.2008.06.015.
[9] DAHBI S, ABOUTNI R, AZIZ A, et al. Optimised hydrogen production by a photovoltaic-electrolysis system DC/DC converter and water flow controller [J]. International journal of hydrogen energy, 2016, 41(45): 20858-20866. DOI:  10.1016/j.ijhydene.2016.05.111.
[10] 戴凡博. PEM电解水制氢催化剂及直接耦合光伏发电系统建模研究 [D]. 杭州: 浙江大学, 2020.

DAI F B. Study of catalyst in PEM water electrolysis and directly coupling photovoltaic system simulation [D]. Hangzhou: Zhejiang University, 2020.
[11] 周涣, 田易之. 光伏-PEM制氢直接耦合系统建模与仿真 [J]. 现代电子技术, 2022, 45(19): 178-181. DOI:  10.16652/j.issn.1004-373x.2022.19.032.

ZHOU H, TIAN Y Z. Modeling and simulation of photovoltaic-PEM hydrogen production direct coupling system [J]. Modern electronics technique, 2022, 45(19): 178-181. DOI:  10.16652/j.issn.1004-373x.2022.19.032.
[12] 江悦, 沈小军, 吕洪, 等. 碱性电解槽运行特性数字孪生模型构建及仿真 [J]. 电工技术学报, 2022, 37(11): 2897-2908. DOI:  10.19595/j.cnki.1000-6753.tces.210501.

JIANG Y, SHEN X J, LÜ H, et al. Construction and simulation of operation digital twin model for alkaline water electrolyzer [J]. Transactions of China electrotechnical society, 2022, 37(11): 2897-2908. DOI:  10.19595/j.cnki.1000-6753.tces.210501.
[13] 郭常青, 伊立其, 闫常峰, 等. 太阳能光伏-PEM水电解制氢直接耦合系统优化 [J]. 新能源进展, 2019, 7(3): 287-294. DOI:  10.3969/j.issn.2095-560X.2019.03.012.

GUO C Q, YI L Q, YAN C F, et al. Optimization of photovoltaic-PEM electrolyzer direct coupling systems [J]. Advances in new and renewable energy, 2019, 7(3): 287-294. DOI:  10.3969/j.issn.2095-560X.2019.03.012.
[14] 张财志. 太阳能电解水制氢系统的建模与仿真研究 [D]. 成都: 西南交通大学, 2009.

ZHANG C Z. Modeling and simulation for solar-hydrogen system [D]. Chengdu: Southwest Jiaotong University, 2009.
[15] 蔡国伟, 孔令国, 彭龙, 等. 基于氢储能的主动型光伏发电系统建模与控制 [J]. 太阳能学报, 2016, 37(10): 2451-2459. DOI:  10.3969/j.issn.0254-0096.2016.10.001.

CAI G W, KONG L G, PENG L, et al. Modeling and control of active PV generation system based on hydrogrn storage [J]. Acta energiae solaris sinica, 2016, 37(10): 2451-2459. DOI:  10.3969/j.issn.0254-0096.2016.10.001.
[16] 蔡国伟, 陈冲, 孔令国, 等. 风电/光伏/制氢/超级电容器并网系统建模与控制 [J]. 电网技术, 2016, 40(10): 2982-2990. DOI:  10.13335/j.1000-3673.pst.2016.10.009.

CAI G W, CHEN C, KONG L G, et al. Modeling and control of grid-connected system of wind/PV/electrolyzer and SC [J]. Power system technology, 2016, 40(10): 2982-2990. DOI:  10.13335/j.1000-3673.pst.2016.10.009.
[17] TIJANI A S, YUSUP N A B, RAHIM A H A. Mathematical modelling and simulation analysis of advanced alkaline electrolyzer system for hydrogen production [J]. Procedia technology, 2014, 15: 798-806. DOI:  10.1016/j.protcy.2014.09.053.
[18] ULLEBERG Ø. Modeling of advanced alkaline electrolyzers: a system simulation approach. International journal of hydrogen energy [J]. International journal of hydrogen energy, 2003, 28(1): 21-33. DOI:  10.1016/S0360-3199(02)00033-2.
[19] NGOH S K, NJOMO D. An overview of hydrogen gas production from solar energy [J]. Renewable and sustainable energy reviews, 2012, 16(9): 6782-6792. DOI:  10.1016/j.rser.2012.07.027.
[20] NKANGA E R E, NDOH D Z N, NTONDA J N, et al. Modeling of hydrogen production in an alkaline electrolyser system connected with a solar photovoltaic panel or a wind turbine: case study; douala-cameroon [J]. Journal of power and energy engineering, 2021, 9(10): 1-18. DOI:  10.4236/jpee.2021.910001.