[1] 黄俊. 海上风电基础特点及中国海域的适用性分析 [J]. 风能, 2020(2): 36-40. DOI:  10.3969/j.issn.1674-9219.2020.02.013.

HUANG J. Analysis of basic characteristics of offshore wind power and applicability of China waters [J]. Wind energy, 2020(2): 36-40. DOI:  10.3969/j.issn.1674-9219.2020.02.013.
[2] 陈易人, 姚靳羽, 李明轩, 等. 带月池驳船式浮式风机水动力性能 [J]. 上海交通大学学报: 1-35. [2024-01-02]. DOI:  10.16183/j.cnki.jsjtu.2022.521.

CHEN Y R, YAO J Y, LI M X, et al. Hydrodynamic performance of a barge-type floating offshore wind turbine with moonpool [J]. Journal of Shanghai Jiaotong University, 1-35. [2024-01-02]. DOI:  10.16183/j.cnki.jsjtu.2022.521.
[3] DYMARSKI P, DYMARSKI C, CIBA E. Stability analysis of the floating offshore wind turbine support structure of cell spar type during its installation [J]. Polish maritime research, 2019, 26(4): 109-116. DOI:  10.2478/pomr-2019-0072.
[4] HAN Y Q, LE C H, DING H Y, et al. Stability and dynamic response analysis of a submerged tension leg platform for offshore wind turbines [J]. Ocean engineering, 2017, 129(6): 68-82. DOI:  10.1016/j.oceaneng.2016.10.048.
[5] 张浦阳, 石建超, 丁红岩, 等. 海上风电复合筒型基础结构浮运分析 [J]. 太阳能学报, 2014, 35(11): 2313-2319. DOI:  10.3969/j.issn.0254-0096.2014.11.037.

ZHANG P Y, SHI J C, DING H Y, et al. Floating analysis of composite bucket foundation of offshore wind turbine [J]. Acta energiae solaris sinica, 2014, 35(11): 2313-2319. DOI:  10.3969/j.issn.0254-0096.2014.11.037.
[6] 韩彦青, 丁红岩, 张浦阳, 等. 基于多体动力学的浮式风机拖航中的环境影响分析 [J]. 天津大学学报(自然科学与工程技术版), 2017, 50(10): 1055-1061. DOI: 10.11784/tdxbz20160 5059.

HAN Y Q, DING H Y, ZHANG P Y, et al. Environmental effects on towing of floating wind turbine based on multibody dynamics [J]. Journal of Tianjin University (Science and Technology Edition), 2017, 50(10): 1055-1061. DOI: 10.11784/tdxbz20160 5059.
[7] DING H Y, HAN Y Q, LE C H, et al. Dynamic analysis of a floating wind turbine in wet tows based on multi-body dynamics [J]. Journal of renewable and sustainable energy, 2017, 9(3): 033301. DOI:  10.1063/1.4982742.
[8] 丁红岩, 韩彦青, 张浦阳, 等. 全潜式浮式风机基础在不同风况下的动力特性研究 [J]. 振动与冲击, 2017, 36(6): 201-206, 228. DOI:  10.13465/j.cnki.jvs.2017.06.031.

DING H Y, HAN Y Q, ZHANG P Y, et al. Dynamic analysis of the submersible foundation for floating wind turbine in different wind conditions [J]. Journal of vibration and shock, 2017, 36(6): 201-206, 228. DOI:  10.13465/j.cnki.jvs.2017.06.031.
[9] 倪道俊, 肖瑶瑶. 海上风力发电复合筒型基础拖航稳性研究 [J]. 南方能源建设, 2021, 8(4): 26-31. DOI:  10.16516/j.gedi.issn2095-8676.2021.04.004.

NI D J, XIAO Y Y. Research on towing stability of composite bucket foundation for offshore wind power generation [J]. Southern energy construction, 2021, 8(4): 26-31. DOI:  10.16516/j.gedi.issn2095-8676.2021.04.004.
[10] 任灏, 马兆荣, 李聪, 等. 海上风电多筒导管架基础湿拖过程稳性控制研究 [J]. 南方能源建设, 2021, 8(增刊1): 65-69. DOI:  10.16516/j.gedi.issn2095-8676.2021.S1.010.

REN H, MA Z R, LI C, et al. Research on stability control of offshore wind power multi jacket foundation during wet towing [J]. Southern energy construction, 2021, 8(Suppl.1): 65-69. DOI:  10.16516/j.gedi.issn2095-8676.2021.S1.010.
[11] 蔡彦枫, 王海龙, 周川, 等. 基于长期实测资料的风速测量相关推测方法对比 [J]. 南方能源建设, 2017, 4(3): 97-102, 106. DOI:  10.16516/j.gedi.issn2095-8676.2017.03.018.

CAI Y F, WANG H L, ZHOU C, et al. Comparison of measure-correlation-predict algorithms in offshore wind power assessment with multi-year observation of automatic weather stations [J]. Southern energy construction, 2017, 4(3): 97-102, 106. DOI:  10.16516/j.gedi.issn2095-8676.2017.03.018.
[12] 乐丛欢, 滕丽霞, 李彦娥, 等. 新型全潜式浮式风机在不同风况下的动力响应分析 [J]. 中国海洋大学学报, 2019, 49(增刊1): 120-127. DOI:  10.16441/j.cnki.hdxb.20180406.

LE C H, TENG L X, LI Y E, et al. Dynamic response analysis of a new type submersible floating wind turbines under different wind conditions [J]. Journal of Ocean University of China, 2019, 49(Suppl.1): 120-127. DOI:  10.16441/j.cnki.hdxb.20180406.
[13] 张延涛, 吕柏呈, 武文华, 等. 基于现场实测的渤海风速特性研究 [J]. 海洋工程, 2020, 38(1): 147-153. DOI:  10.16483/j.issn.1005-9865.2020.01.015.

ZHANG Y T, LÜ B C, WU W H, et al. Wind characteristics analysis of Bohai Bay based on field measurement [J]. The ocean engineering, 2020, 38(1): 147-153. DOI:  10.16483/j.issn.1005-9865.2020.01.015.
[14] 陈嘉豪, 裴爱国, 马兆荣, 等. 海上漂浮式风机关键技术研究进展 [J]. 南方能源建设, 2020, 7(1): 8-20. DOI:  10.16516/j.gedi.issn2095-8676.2020.01.002.

CHEN J H, PEI A G, MA Z R, et al. A review of the key technologies for floating offshore wind turbines [J]. Southern energy construction, 2020, 7(1): 8-20. DOI:  10.16516/j.gedi.issn2095-8676.2020.01.002.
[15] 李聪, 马兆荣, 刘晋超, 等. 海上测风塔整体耦合风荷载计算 [J]. 南方能源建设, 2015, 2(3): 86-90. DOI:  10.16516/j.gedi.issn2095-8676.2015.03.017.

LI C, MA Z R, LIU J C, et al. Full-coupled wind load calculation of offshore wind measurement mast [J]. Southern energy construction, 2015, 2(3): 86-90. DOI:  10.16516/j.gedi.issn2095-8676.2015.03.017.
[16] 李敏生, 王振华. 中国输电线路规范的风荷载计算比较 [J]. 南方能源建设, 2018, 5(3): 89-93. DOI:  10.16516/j.gedi.issn2095-8676.2018.03.014.

LI M S, WANG Z H. Comparison of wind load calculation for China transmission codes [J]. Southern energy construction, 2018, 5(3): 89-93. DOI:  10.16516/j.gedi.issn2095-8676.2018.03.014.
[17] 杜齐鲁, 黄海龙, 周益人, 等. 海洋工程试验中API谱特性的风模拟 [J]. 水利水运工程学报, 2016(1): 17-22. DOI:  10.16198/j.cnki.1009-640X.2016.01.003.

DU Q L, HUANG H L, ZHOU Y R, et al. API simulation spectrum in ocean engineering based on physical model tests [J]. Hydro-science and engineering, 2016(1): 17-22. DOI:  10.16198/j.cnki.1009-640X.2016.01.003.
[18] 美国石油学会. API RP 2A-WSD-2014海上固定平台规划、设计和建造的推荐作法(工作应力设计法): API RP 2A-WSD-2014 [S]. 华盛顿: 美国石油学会, 2014.

American Petroleum Institute. Planning, designing and constructing fixed offshore platforms-working stress design: API RP 2A-WSD-2014 [S]. Washington: API, 2014.
[19] 扈喆, 张晓莹, 李妍, 等. 改进的浮体运动响应间接时域计算方法 [J]. 哈尔滨工程大学学报, 2021, 42(10): 1482-1489. DOI:  10.11990/jheu.202007010.

HU Z, ZHANG X Y, LI Y, et al. Improved indirect time domain method for calculating the motion response of floating bodies [J]. Journal of Harbin Engineering University, 2021, 42(10): 1482-1489. DOI:  10.11990/jheu.202007010.
[20] CUMMINS W E. The impulse response function and ship motions [J]. Schiffstechnik, 1962, 9(1): 101-109.