[1] 郑琼, 江丽霞, 徐玉杰, 等. 碳达峰、碳中和背景下储能技术研究进展与发展建议 [J]. 中国科学院院刊, 2022, 37(4): 529-540. DOI:  10.16418/j.issn.1000-3045.20220311001.

ZHENG Q, JIANG L X, XU Y J, et al. Research progress and development suggestions of energy storage technology under background of carbon peak and carbon neutrality [J]. Bulletin of Chinese Academy of Sciences, 2022, 37(4): 529-540. DOI:  10.16418/j.issn.1000-3045.20220311001.
[2] 陈海生, 俞振华, 刘为. 储能产业研究白皮书2022 [M]. 北京: 中国能源研究会储能专委会, 2022.

CHEN H S, YU Z H, LIU W. White paper on energy storage industry research 2022 [M]. Beijing: China Energy Storage Alliance, 2022.
[3] 中国能源报. 国网南网抽蓄电站建设计划雄心勃勃 [EB/OL]. (2022-03-08)[2022-05-20]. https://baijiahao.baidu.com/s?id=1728480101196728180&wfr=spider&for=pc.

China Energy News. The state grid southern grid project is ambitious[EB/OL]. (2022-03-08)[2022-05-20]. https://baijiahao.baidu.com/s?id=1728480101196728180&wfr=spider&for=pc.
[4] TER-GAZARIAN A G. Energy storage for power systems [M]. London: Institution of Engineering and Technology, 2011.
[5] 赵会林, 鲁新蕊. 抽水蓄能电站的选点原则 [J]. 东北水利水电, 2012, 30(4): 1-2. DOI:  10.14124/j.cnki.dbslsd22-1097.2012.04.030.

ZHAO H L, LU X R. Principles of site selection for pumped storage power station [J]. Water Resources & Hydropower of Northeast China, 2012, 30(4): 1-2. DOI:  10.14124/j.cnki.dbslsd22-1097.2012.04.030.
[6] SLOCUM A H, MAY W M, MAY A H, et al. Innovative pumped storage hydropower configurations and uses [M]. America: Pumped Storage Hydropower International Forum, 2021.
[7] PUJADES E, ORBAN P, BODEUX S, et al. Underground pumped storage hydropower plants using open pit mines: how do groundwater exchanges influence the efficiency? [J]. Applied Energy, 2017, 190: 135-146. DOI:  10.1016/j.apenergy.2016.12.093.
[8] 孙汉虹, 程平东, 缪鸿兴, 等. 第三代核电技术AP1000(2版) [M]. 北京: 中国电力出版社, 2016.

SUN H H, CHENG P D, LIAO H X, et al. The third generation nuclear power technology AP1000 (2nd ed. ) [M]. Beijing: China Electric Power Press, 2016.
[9] 张新敬, 陈海生, 刘金超, 等. 压缩空气储能技术研究进展 [J]. 储能科学与技术, 2012, 1(1): 26-40.

ZHANG X J, CHEN H S, LIU J C, et al. Research progress in compressed air energy storage system: a review [J]. Energy Storage Science and Technology, 2012, 1(1): 26-40.
[10] 郭祚刚, 马溪原, 雷金勇, 等. 压缩空气储能示范进展及商业应用场景综述 [J]. 南方能源建设, 2019, 6(3): 17-26. DOI:  10.16516/j.gedi.issn2095-8676.2019.03.003.

GUO Z G, MA X Y, LEI J Y, et al. Review on demonstration progress and commercial application scenarios of compressed air energy storage system [J]. Southern Energy Construction, 2019, 6(3): 17-26. DOI:  10.16516/j.gedi.issn2095-8676.2019.03.003.
[11] 吴丰, 石雷雷, 李晓锋. 国内空分技术的现状与进展 [J]. 中氮肥, 2016(5): 52-56. DOI:  10.16612/j.cnki.issn1004-9932.2016.05.015.

WU F, SHI L L, LI X F. Present situation and development of domestic air separation technology [J]. M-Sized Nitrogenous Fertilizer Progress, 2016(5): 52-56. DOI:  10.16612/j.cnki.issn1004-9932.2016.05.015.
[12] 李广阔, 王国华, 薛小代, 等. 金坛盐穴压缩空气储能电站调相模式设计与分析 [J]. 电力系统自动化, 2021, 45(19): 91-99. DOI:  10.7500/AEPS20210120006.

LI G K, WANG G H, XUE X D, et al. Design and analysis of condenser mode for Jintan salt cavern compressed air energy storage plant of China [J]. Automation of Electric Power Systems, 2021, 45(19): 91-99. DOI:  10.7500/AEPS20210120006.
[13] 蒋中明, 唐栋, 李鹏, 等. 压气储能地下储气库选型选址研究 [J]. 南方能源建设, 2019, 6(3): 6-16. DOI:  10.16516/j.gedi.issn2095-8676.2019.03.002.

JIANG Z M, TANG D, LI P, et al. Research on selection method for the types and sites of underground repository for compressed air storage [J]. Southern Energy Construction, 2019, 6(3): 6-16. DOI:  10.16516/j.gedi.issn2095-8676.2019.03.002.
[14] 郭朝斌, 李采, 杨利超, 等. 压缩空气地质储能研究现状及工程案例分析 [J]. 中国地质调查, 2021, 8(4): 109-119. DOI:  10.19388/j.zgdzdc.2021.04.12.

GUO C B, LI C, YANG L C, et al. Research review and engineering case analysis of geological compressed air energy storage [J]. Geological Survey of China, 2021, 8(4): 109-119. DOI:  10.19388/j.zgdzdc.2021.04.12.
[15] 郭丁彰, 尹钊, 周学志, 等. 压缩空气储能系统储气装置研究现状与发展趋势 [J]. 储能科学与技术, 2021, 10(5): 1486-1493. DOI:  10.19799/j.cnki.2095-4239.2021.0356.

GUO D Z, YIN Z, ZHOU X Z, et al. Status and prospect of gas storage device in compressed air energy storage system [J]. Energy Storage Science and Technology, 2021, 10(5): 1486-1493. DOI:  10.19799/j.cnki.2095-4239.2021.0356.
[16] 中华人民共和国中央人民政府. 江苏句容抽水蓄能电站开建[EB/OL]. (2016-12-09) [2022-05-20]. http://www.gov.cn/xinwen/2016-12/09/content_5145531.htm.

Central People's Government of the People's Republic of China. Pumped storage power station began construction in Jurong, Jiangsu Province [EB/OL]. (2016-12-09) [2022-05-20]. http://www.gov.cn/xinwen/2016-12/09/content_5145531.htm.
[17] 孙晓霞, 桂中华, 张新敬, 等. 压缩空气储能与可再生能源耦合研究进展[J/OL]. 中国电机工程学报: 1-20 [2023-03-02]. DOI: 10.13334/j.0258-8013.pcsee.221437.

SUN X X , GUI Z H , ZHANG X J, et al. Research Progress on Compressed Air Energy Storage Coupled with Renewable Energy[J/OL]. Proceedings of the CSEE: 1-20 [2023-03-02]. DOI: 10.13334/j.0258-8013.pcsee.221437.
[18] ZHANG Y, XU Y, GUO H, et al. A hybrid energy storage system with optimized operating strategy for mitigating wind power fluctuations [J]. Renewable Energy, 2018, 125: 121-3. DOI:  10.1016/j.renene.2018.02.058.
[19] ZHANG Y, XU Y, ZHOU X, et al. Compressed air energy storage system with variable configuration for accommodating large-amplitude wind power fluctuation [J]. Applied Energy, 2019, 239: 957-968. DOI:  10.1016/j.apenergy.2019.01.250.
[20] MOHAMMADI A, MEHRPOOYA M. Exergy analysis and optimization of an integrated micro gas turbine, compressed air energy storage and solar dish collector process [J]. Journal of Cleaner Production, 2016, 139: 372-83. DOI:  10.1016/j.jclepro.2016.08.057.
[21] 韩中合, 安鹏, 郭森闯, 等. 基于太阳能辅热的AA-CAES热力性能分析 [J]. 太阳能学报, 2020, 41(8): 243-250. DOI:  10.19912/j.0254-0096.2020.08.033.

Han Z H, An P, Guo S C, et al. Thermaldynamic performance analysis of advanced adiabatic compressed air energy storage system based on solar auxiliary heating [J]. Acta Energiae Solaris Sinica, 2020, 41(8): 243-250. DOI:  10.19912/j.0254-0096.2020.08.033.
[22] RAZMI A R, HEYDARI A H, POURAHMADIYAN A, et al. Investigation of a combined heat and power (CHP) system based on biomass and compressed air energy storage (CAES) [J]. Sustainable Energy Technologies and Assessments, 2021, 46: 101253. DOI:  10.1016/j.seta.2021.101253.
[23] LLAMAS B, ORTEGA M F, BARTHELEMY G, et al. Development of an efficient and sustainable energy storage system by hybridization of compressed air and biogas technologies (BIO-CAES) [J]. Energy Conversion and Management, 2020, 210: 112695. DOI:  10.1016/j.enconman.2020.112695.
[24] ALIRAHMI S M, RAZMI A R, ARABKOOHSAR A. Comprehensive assessment and multi-objective optimization of a green concept based on a combination of hydrogen and compressed air energy storage (CAES) systems [J]. Renewable and Sustainable Energy Reviews, 2021, 142: 110850. DOI:  10.1016/j.rser.2021.110850.
[25] BARTELA U. A hybrid energy storage system using compressed air and hydrogen as the energy carrier [J]. Energy, 2020, 196: 117088. DOI:  10.1016/j.energy.2020.117088.