[1] 国家统计局. 中国统计年鉴 [M]. 北京: 中国统计出版社, 2021.

National Bureau of Statistics. China statistical yearbook [M]. Beijing: China Statistics Press, 2021.
[2] 中国电力企业联合会. 电力行业碳达峰碳中和发展路径研究 [R/OL]. (2021-12-27)[2022-09-04]. https://cec.org.cn/detail/index.html?3-305168.

China Electricity Council. Research on the development path of carbon peaking and carbon neutrality in the power industry [R/OL]. (2021-12-27)[2022-09-04]. https://cec.org.cn/detail/index.html?3-305168.
[3] 陆树银, 刘浩晨, 顾煜炯, 等. 大型热电联产机组供热改造分析 [J]. 工程热物理学报, 2022, 43(5): 1182-1189.

LU S Y, LIU H C, GU Y J, et al. Thermodynamic analysis of heating reformation of large-scale CHP [J]. Journal of engineering thermophysics, 2022, 43(5): 1182-1189.
[4] 魏海姣, 鹿院卫, 张灿灿, 等. 燃煤机组灵活性调节技术研究现状及展望 [J]. 华电技术, 2020, 42(4): 57-63. DOI:  10.3969/j.issn.1674-1951.2020.04.009.

WEI H J, LU Y W, ZHANG C C, et al. Status and prospect of flexibility regulation technology for coal-fired power plants [J]. Huadian technology, 2020, 42(4): 57-63. DOI:  10.3969/j.issn.1674-1951.2020.04.009.
[5] 张文祥, 宋放放, 谢林贵, 等. 新型热电联产汽轮机系统研究 [J]. 东方汽轮机, 2021(3): 23-28. DOI:  10.13808/j.cnki.issn1674-9987.2021.03.006.

ZHANG W X, SONG F F, XIE L G, et al. Study on new steam turbine system for cogeneration [J]. Dongfang turbine, 2021(3): 23-28. DOI:  10.13808/j.cnki.issn1674-9987.2021.03.006.
[6] 张知足, 张卫义, 刘阿珍, 等. 热电联产应用技术国内外研究现状 [J]. 北京石油化工学院学报, 2020, 28(2): 29-39. DOI:  10.19770/j.cnki.issn.1008-2565.2020.02.004.

ZHANG Z Z, ZHANG W Y, LIU A Z, et al. The research status of cogeneration application technology at home and abroad [J]. Journal of Beijing institute of petrochemical technology, 2020, 28(2): 29-39. DOI:  10.19770/j.cnki.issn.1008-2565.2020.02.004.
[7] 邹罗明. 超超临界机组邻炉蒸汽加热系统优化研究 [J]. 南方能源建设, 2016, 3(2): 127-130,20. DOI:  10.16516/j.gedi.issn2095-8676.2016.02.024.

ZOU L M. Optimization research on adjacent boiler heating system of ultra supercritical unit [J]. Southern energy construction, 2016, 3(2): 127-130,20. DOI:  10.16516/j.gedi.issn2095-8676.2016.02.024.
[8] 王东雷, 张鹏, 霍沛强. 采用再热温度630 ℃的1000 MW新一代超超临界二次再热机组可行性研究 [J]. 南方能源建设, 2018, 5(3): 33-41. DOI:  10.16516/j.gedi.issn2095-8676.2018.03.005.

WANG D L, ZHANG P, HUO P Q. Feasibility study on 1000 MW new generation ultra-supercritical unit with double re-heating cycles at 630 ℃ [J]. Southern energy construction, 2018, 5(3): 33-41. DOI:  10.16516/j.gedi.issn2095-8676.2018.03.005.
[9] 朱晓群. 吸收式热泵在火电厂循环水余热利用中的应用 [J]. 宁夏电力, 2014(3): 56-59. DOI:  10.3969/j.issn.1672-3643.2014.03.013.

ZHU X Q. Application of the pump for absorption heat of circulation water residual heat utilization system in coal-fired power plant [J]. Ningxia electric power, 2014(3): 56-59. DOI:  10.3969/j.issn.1672-3643.2014.03.013.
[10] 鲁旭东. 呼热350 MW机组热泵供热技术实践 [D]. 保定: 华北电力大学, 2016. DOI: 10.7666/d.D01072252.

LU X D. Heating technology practice of heat pump in 350 MW unit for hohhot thermal power plant [D]. Baoding: North China Electric Power University, 2016. DOI: 10.7666/d.D01072252.
[11] 张虎男. 350 MW超临界机组高背压供热改造研究及性能分析 [D]. 大连: 大连理工大学, 2017.

ZHANG H N. Research and performance analysis of high-back-pressure heating reformation of 350 MW supercritical unit [D]. Dalian: Dalian University of Technology, 2017.
[12] 靖长财, 王凤池. 660 MW超临界空冷机组提升供热经济性与灵活性研究 [J]. 能源科技, 2021, 19(1): 46-49.

JING C C, WANG F C. Research on improving heating economy and flexibility of 660 MW supercritical air-cooled unit [J]. Energy science and technology, 2021, 19(1): 46-49.
[13] 董昊炯, 何新有. 背压式热电联产汽轮机启动运行特点分析 [J]. 热力透平, 2020, 49(4): 252-256. DOI:  10.13707/j.cnki.31-1922/th.2020.04.002.

DONG H J, HE X Y. Analysis on start-up and operation characteristics of back pressure combined heat and power steam turbine [J]. Thermal turbine, 2020, 49(4): 252-256. DOI:  10.13707/j.cnki.31-1922/th.2020.04.002.
[14] 刘立华, 魏湘, 杨铁峰, 等. 超临界600 MW直接空冷机组双背压供热改造技术 [J]. 热力发电, 2018, 47(12): 87-92. DOI:  10.19666/j.rlfd.201808166.

LIU L H, WEI X, YANG T F, et al. Double-backpressure heating flexible reformation technology for a supercritical 600 MW direct air cooling unit [J]. Thermal power generation, 2018, 47(12): 87-92. DOI:  10.19666/j.rlfd.201808166.
[15] 车洵, 朱旻昊, 曹勤, 等. 新型节能背压式汽轮机研究 [J]. 热力透平, 2016, 45(1): 33-36. DOI:  10.13707/j.cnki.31-1922/th.2016.01.007.

CHE X, ZHU M H, CAO Q, et al. Research on new type of energy-saving steam turbine with back pressure [J]. Thermal turbine, 2016, 45(1): 33-36. DOI:  10.13707/j.cnki.31-1922/th.2016.01.007.
[16] 刘强, 段远源. 背压式汽轮机组与有机朗肯循环耦合的热电联产系统 [J]. 中国电机工程学报, 2013, 33(23): 29-36. DOI:  10.13334/j.0258-8013.pcsee.2013.23.014.

LIU Q, DUAN Y Y. Cogeneration system comprising back-pressure steam turbine generating unit coupled with organic rankine cycle [J]. Proceedings of the CSEE, 2013, 33(23): 29-36. DOI:  10.13334/j.0258-8013.pcsee.2013.23.014.
[17] 胡中强. 背压式汽轮机组与有机朗肯循环耦合的热电联产系统分析及应用 [J]. 上海节能, 2020(11): 1265-1268. DOI:  10.13770/j.cnki.issn2095-705x.2020.11.005.

HU Z Q. Analysis and application of cogeneration system with back pressure turbine unit and organic rankine cycle coupling [J]. Shanghai energy conservation, 2020(11): 1265-1268. DOI:  10.13770/j.cnki.issn2095-705x.2020.11.005.
[18] 陈先锋. 背压式汽轮机的启动方式分析 [J]. 热力透平, 2018, 47(3): 182-185. DOI:  10.13707/j.cnki.31-1922/th.2018.03.004.

CHEN X F. Analysis of start-up mode of back pressure turbine [J]. Thermal turbine, 2018, 47(3): 182-185. DOI:  10.13707/j.cnki.31-1922/th.2018.03.004.
[19] 费卓, 范圣波, 朱文凯. 50 MW背压式汽轮机降背压运行实践研究 [J]. 东北电力技术, 2020, 41(3): 53-55,62. DOI:  10.3969/j.issn.1004-7913.2020.03.015.

FEI Z, FAN S B, ZHU W K. Research on practice of 50 MW back pressure turbine in back pressure reducing [J]. Northeast electric power technology, 2020, 41(3): 53-55,62. DOI:  10.3969/j.issn.1004-7913.2020.03.015.
[20] 陆群. 大型汽轮机抽汽采用背压式汽轮机供热技术经济效益评价 [J]. 电工技术, 2021(23): 185-187. DOI:  10.19768/j.cnki.dgjs.2021.23.061.

LU Q. Evaluation of economic benefits of back-pressure steam turbine heating technology for large steam turbine extraction steam [J]. Electric engineering, 2021(23): 185-187. DOI:  10.19768/j.cnki.dgjs.2021.23.061.
[21] 薛朝囡, 石慧, 陈霖, 等. 基于背压式汽轮机的宽负荷高效回热系统热经济性分析 [J]. 热力发电, 2018, 47(9): 103-108. DOI:  10.19666/j.rlfd.201801012.

XUE Z N, SHI H, CHEN L, et al. Thermo-economic performance analysis for wide-load and high-efficiency regenerative system based on back-pressure steam turbine [J]. Thermal power generation, 2018, 47(9): 103-108. DOI:  10.19666/j.rlfd.201801012.
[22] 郑之民. 330 MW机组不同供热方式下的经济性分析 [J]. 发电设备, 2021, 35(2): 145-148. DOI:  10.19806/j.cnki.fdsb.2021.02.013.

ZHENG Z M. Economy analysis of a 330 MW unit with different heating modes [J]. Power equipment, 2021, 35(2): 145-148. DOI:  10.19806/j.cnki.fdsb.2021.02.013.
[23] 宋萍, 刘晓燕, 唐丽丽, 等. 超临界再热型两级调节工业抽汽背压式汽轮机供热方案研究 [J]. 东方汽轮机, 2020(3): 5-9. DOI:  10.13808/j.cnki.issn1674-9987.2020.03.002.

SONG P, LIU X Y, TANG L L, et al. Heating scheme introduction of supercritical two-stage back pressure reheating and coaxial layout steam turbine [J]. Dongfang turbine, 2020(3): 5-9. DOI:  10.13808/j.cnki.issn1674-9987.2020.03.002.
[24] 王勇, 马聪, 魏光, 等. 超临界再热型双抽背压式汽轮机高压缸夹层加热系统优化研究 [J]. 东北电力技术, 2021, 42(9): 37-39. DOI:  10.3969/j.issn.1004-7913.2021.09.008.

WANG Y, MA C, WEI G, et al. Research on high pressure cylinder interlayer heating system optimization for supercritical reheat double suction back pressure steam turbine [J]. Northeast electric power technology, 2021, 42(9): 37-39. DOI:  10.3969/j.issn.1004-7913.2021.09.008.
[25] 罗方, 宋风强, 侯明军, 等. 超临界再热型双抽背压式汽轮机运行策略 [J]. 东方电气评论, 2021, 35(1): 40-44. DOI:  10.3969/j.issn.1001-9006.2021.01.012.

LUO F, SONG F Q, HOU M J, et al. The operation strategy of supercritical reheating double extracting back-pressure turbine [J]. Dongfang electric review, 2021, 35(1): 40-44. DOI:  10.3969/j.issn.1001-9006.2021.01.012.