[1] 王辉辉. 磁约束聚变堆托卡马克误差场研究进展综述 [J]. 南方能源建设, 2022, 9(2): 1-18. DOI:  10.16516/j.gedi.issn2095-8676.2022.02.001.

WANG H H. The Progress of error field investigation in magnetically confined fusion tokamak reactor [J]. Southern energy construction, 2022, 9(2): 1-18. DOI:  10.16516/j.gedi.issn2095-8676.2022.02.001.
[2] WESSON J. Tokamaks [M]. Oxford: Oxford University Press, 2004.
[3] PRATER R. Heating and current drive by electron cyclotron waves [J]. Physics of plasmas, 2004, 11(5): 2349-2376. DOI:  10.1063/1.1690762.
[4] XIA D H, CHEN X X, XU D F, et al. Recent progress of the ECRH system and initial experimental results on the J-TEXT tokamak [J]. Plasma science and technology, 2022, 24(12): 124010. DOI:  10.1088/2058-6272/aca4b5.
[5] ZHANG J L, XIA D H, LIU C H, et al. Design of a launcher for the 105-GHz ECRH System on J-TEXT [J]. IEEE Transactions on Plasma Science, 2019, 48(6): 1560-1565. DOI:  10.1109/TPS.2019.2951816.
[6] LLOYD B. Overview of ECRH experimental results [J]. Plasma physics and controlled fusion, 1998, 40(8A): A119-A138. DOI:  10.1088/0741-3335/40/8A/010.
[7] ERCKMANN V, GASPARINO U. Electron cyclotron resonance heating and current drive in toroidal fusion plasmas [J]. Plasma physics and controlled fusion, 1994, 36(12): 1869-1962. DOI:  10.1088/0741-3335/36/12/001.
[8] WAGNER D, STOBER J, LEUTERER F, et al. Status, operation, and extension of the ECRH system at ASDEX upgrade [J]. Journal of infrared, millimeter, and terahertz waves, 2016, 37(1): 45-54. DOI:  10.1007/s10762-015-0187-z.
[9] CENGHER M, CHEN X, ELLIS R, et al. Advances in technology and high power performance of the ECH system on DIII-D [J]. Fusion engineering and design, 2017, 123: 295-298. DOI:  10.1016/j.fusengdes.2017.05.022.
[10] WANG X J, LIU F K, SHAN J F, et al. Progress of high power and long pulse ECRH system in EAST [J]. Fusion engineering and design, 2015, 96-97: 181-186. DOI:  10.1016/j.fusengdes.2015.03.042.
[11] HUANG M, RAO J, SONG S D, et al. Design and research of electron cyclotron resonance heating and current dive system on HL-2M tokamak [J]. EPJ web of conferences, 2017, 147: 04006. DOI:  10.1051/epjconf/201714704006.
[12] WOLF R C, ALI A, ALONSO A, et al. Major results from the first plasma campaign of the Wendelstein 7-X stellarator [J]. Nuclear fusion, 2017, 57(10): 102020. DOI:  10.1088/1741-4326/aa770d.
[13] SHIMOZUMA T, IGAMI H, KUBO S, et al. Optimization of the high harmonic ECRH scenario to extend a heating plasma parameter range in LHD [J]. Nuclear fusion, 2015, 55(6): 063035. DOI:  10.1088/0029-5515/55/6/063035.
[14] IKEDA R, SHINYA T, YAJIMA S, et al. Multi-frequency, megawatt-power gyrotron to facilitate a wide range of operations at ITER [J]. Nuclear fusion, 2023, 63(6): 066028. DOI:  10.1088/1741-4326/accdeb.
[15] LITVAK A, SAKAMOTO K, THUMM M. Innovation on high-power long-pulse gyrotrons [J]. Plasma Physics and Con-trolled Fusion, 2011, 53(12): 124002. DOI:  10.1088/0741-3335/53/12/124002.
[16] THUMM M K A, DENISOV G G, SAKAMOTO K, et al. High-power gyrotrons for electron cyclotron heating and current drive [J]. Nuclear fusion, 2019, 59(7): 073001. DOI:  10.1088/1741-4326/ab2005.
[17] TANG Y Y, WANG X J, ZHANG L Y, et al. Design status of the ECRH system for CFETR [J]. Fusion engineering and design, 2022, 182: 113225. DOI:  10.1016/j.fusengdes.2022.113225.
[18] IKEDA R, KAJIWARA K, NAKAI T, et al. Progress on performance tests of ITER gyrotrons and design of dual-frequency gyrotrons for ITER staged operation plan [J]. Nuclear fusion, 2021, 61(10): 106031. DOI:  10.1088/1741-4326/ac21f7.
[19] THUMM M. Recent advances in the worldwide fusion gyrotron development [J]. IEEE transactions on plasma science, 2014, 42(3): 590-599. DOI:  10.1109/TPS.2013.2284026.
[20] ZOHM H, THUMM M. On the use of step-tuneable gyrotrons in ITER [J]. Journal of physics:conference series, 2005, 25: 274-282. DOI:  10.1088/1742-6596/25/1/033.
[21] WAGNER D, STOBER J, KIRCHER M, et al. Extension of the multi-frequency ECRH system at ASDEX upgrade [C]//Proceedings of the 41st International Conference on Infrared, Millimeter, and Terahertz Waves, Copenhagen, Denmark, September 25-30, 2016. Copenhagen: IEEE, 2016: 1-2. DOI:  10.1109/IRMMW-THz.2016.7758412.
[22] SIRAVO U, ALBERTI S, DUBRAY J, et al. Electrical integration of two 1MW/2s dual-frequency gyrotrons into the EC-system of the TCV tokamak [J]. Fusion engineering and design, 2019, 146: 1510-1514. DOI:  10.1016/j.fusengdes.2019.02.117.
[23] PARK H K, CHOI M J, HONG S H, et al. Overview of KSTAR research progress and future plans toward ITER and K-DEMO [J]. Nuclear fusion, 2019, 59(11): 112020. DOI:  10.1088/1741-4326/ab20e2.
[24] HORIE N, OMORI K, OMORI A, et al. High power test of wideband polarizer for electron cyclotron current driving system in JT-60SA [J]. Fusion engineering and design, 2017, 122: 218-222. DOI:  10.1016/j.fusengdes.2017.08.013.
[25] KALARIA P C, AVRAMIDIS K A, FRANCK J, et al. Systematic cavity design approach for a multi-frequency gyrotron for DEMO and study of its RF behavior [J]. Physics of plasmas, 2016, 23(9): 092503. DOI:  10.1063/1.4962238.
[26] JELONNEK J, AIELLO G, ALBERTI S, et al. Design considerations for future DEMO gyrotrons: a review on related gyrotron activities within EURO fusion [J]. Fusion engineering and design, 2017, 123: 241-246. DOI:  10.1016/j.fusengdes.2017.01.047.
[27] 赵磊, 李立, 卜英南, 等. 基于PLC的HL-2A装置电子回旋共振加热系统控制与保护 [J]. 核聚变与等离子体物理, 2010, 30(3): 230-235. DOI:  10.16568/j.0254-6086.2010.03.009.

ZHAO L, LI L, BU Y N, et al. Control and protection system based PLC for the ECRH system on the HL-2A tokamak [J]. Nuclear fusion and plasma physics, 2010, 30(3): 230-235. DOI:  10.16568/j.0254-6086.2010.03.009.
[28] 杨永. EAST装置电子回旋共振加热系统中央控制器设计 [J]. 核聚变与等离子体物理, 2021, 41(3): 234-239. DOI:  10.16568/j.0254-6086.202103007.

YANG Y. Central controller design of electronic cyclotron resonance heating system for EAST [J]. Nuclear fusion and plasma physics, 2021, 41(3): 234-239. DOI:  10.16568/j.0254-6086.202103007.
[29] 杨永. 电子回旋共振加热系统中央控制器异常诊断设计与仿真 [J]. 计算机测量与控制, 2020, 28(5): 46-50. DOI:  10.16526/j.cnki.11-4762/tp.2020.05.011.

YANG Y. Design and simulation of abnormal diagnosis of central controller of ECRH system [J]. Computer measurement & control, 2020, 28(5): 46-50. DOI:  10.16526/j.cnki.11-4762/tp.2020.05.011.
[30] TORREZAN A C, PONCE D, GORELOV Y, et al. New features of the ECH control system on DIII-D and impact of power modulation on collector loading [J]. Fusion engineering and design, 2019, 146: 486-490. DOI:  10.1016/j.fusengdes.2018.12.098.
[31] WILDE F, MARSEN S, STANGE T, et al. Automated mode recovery for gyrotrons demonstrated at Wendelstein 7-X [J]. Fusion engineering and design, 2019, 148: 111258. DOI:  10.1016/j.fusengdes.2019.111258.
[32] WILDE F, LAQUA H P, MARSEN S, et al. Measurements of satellite modes in 140 GHz Wendelstein 7-X gyrotrons: an approach to an electronic stability control [C]//Proceedings of the 2017 18th International Vacuum Electronics Conference, London, UK, April 24-26, 2017. London: IEEE, 2017: 1-2. DOI:  10.1109/IVEC.2017.8289661.
[33] GORMEZANO C, SIPS A C C, LUCE T C, et al. Steady state operation [J]. Nuclear fusion, 2007, 47(6): S285-S336. DOI:  10.1088/0029-5515/47/6/S06.
[34] CHEN X, PETTY C C, LOHR J, et al. Doubling off-axis electron cyclotron current drive efficiency via velocity space engineering [J]. Nuclear fusion, 2022, 62(5): 054001. DOI:  10.1088/1741-4326/ac544a.
[35] PETTY C C, PRATER R, LOHR J, et al. Detailed measurements of the electron cyclotron current drive efficiency on DIII-D [J]. Nuclear fusion, 2002, 42(12): 1366-1375. DOI:  10.1088/0029-5515/42/12/303.
[36] POLI E, TARDINI G, ZOHM H, et al. Electron-cyclotron-current-drive efficiency in DEMO plasmas [J]. Nuclear fusion, 2013, 53(1): 013011. DOI:  10.1088/0029-5515/53/1/013011.
[37] BAE Y S, NAMKUNG W, CHO M H. Ray tracing study on top ECCD launch in KSTAR [J]. EPJ web of conferences, 2017, 157: 03003. DOI:  10.1051/epjconf/201715703003.
[38] GAROFALO A M, CHAN V S, CANIK J M, et al. Progress in the physics basis of a fusion nuclear science facility based on the advanced tokamak concept [J]. Nuclear fusion, 2014, 54(7): 073015. DOI:  10.1088/0029-5515/54/7/073015.
[39] CHEN X, PRATER R, PETTY C, et al. Top launch for higher off-axis electron cyclotron current drive efficiency [J]. EPJ web of conferences, 2019, 203: 01004. DOI:  10.1051/epjconf/201920301004.
[40] BINDSLEV H, HOEKZEMA J A, EGEDAL J, et al. Fast-ion velocity distributions in JET measured by collective Thomson scattering [J]. Physical review letters, 1999, 83(16): 3206. DOI:  10.1103/PhysRevLett.83.3206.
[41] MACHUZAK J S, WOSKOV P P, GILMORE J, et al. TFTR 60 GHz alpha particle collective Thomson scattering diagnostic [J]. Review of scientific instruments, 1995, 66(1): 484-486. DOI:  10.1063/1.1146323.
[42] KRIER L, AVRAMIDIS K A, BRAUNE H, et al. Short-pulse frequency stabilization of a MW-class ECRH gyrotron at W7-X for CTS diagnostic [J]. Fusion engineering and design, 2023, 192: 113828. DOI:  10.1016/j.fusengdes.2023.113828.
[43] MEO F, BINDSLEV H, KORSHOLM S B, et al. Commissioning activities and first results from the collective Thomson scattering diagnostic on ASDEX Upgrade (invited) [J]. Review of scientific instruments, 2008, 79(10): 10E501. DOI:  10.1063/1.2989140.
[44] DENG W C, SHI Z B, SHI P W, et al. Development of a 105 GHz fast ion collective Thomson scattering diagnostic on HL-2A tokamak [J]. Journal of instrumentation, 2022, 17: C02006. DOI:  10.1088/1748-0221/17/02/C02006.
[45] NIELSEN S K, STEJNER M, RASMUSSEN J, et al. Measurements of the fast-ion distribution function at ASDEX upgrade by collective Thomson scattering (CTS) using active and passive views [J]. Plasma physics and controlled fusion, 2015, 57(3): 035009. DOI:  10.1088/0741-3335/57/3/035009.
[46] FOKIN A, GLYAVIN M, GOLUBIATNIKOV G, et al. High-power sub-terahertz source with a record frequency stability at up to 1 Hz [J]. Scientific reports, 2018, 8(1): 4317. DOI:  10.1038/s41598-018-22772-1.
[47] DENISOV G G, KUFTIN A N, GLYAVIN M Y, et al. Experimental tests of a high-stable 170 GHz/25 kW gyrotron as a master oscillator for frequency locking of megawatt level microwave sources [C]//Proceedings of the 2021 22nd International Vacuum Electronics Conference, Rotterdam, Netherlands, April 27-30, 2021. Rotterdam: IEEE, 2021: 1-2. DOI:  10.1109/IVEC51707.2021.9722456.
[48] KORSHOLM S B, CHAMBON A, GONÇALVES B, et al. ITER collective Thomson scattering—preparing to diagnose fusion-born alpha particles (invited) [J]. Review of scientific instruments, 2022, 93(10): 103539. DOI:  10.1063/5.0101867.
[49] STEJNER M, NIELSEN S K, BINDSLEV H, et al. Principles of fuel ion ratio measurements in fusion plasmas by collective Thomson scattering [J]. Plasma physics and controlled fusion, 2011, 53(6): 065020. DOI:  10.1088/0741-3335/53/6/065020.
[50] KORSHOLM S B, STEJNER M, BINDSLEV H, et al. Measurements of intrinsic ion Bernstein waves in a tokamak by collective Thomson scattering [J]. Physical review letters, 2011, 106(16): 165004. DOI:  10.1103/PhysRevLett.106.165004.