[1] 陈海生, 李泓, 马文涛, 等. 2021年中国储能技术研究进展 [J]. 储能科学与技术, 2022, 11(3): 1052-1076. DOI:  10.19799/j.cnki.2095-4239.2023.0330.

CHEN H S, LI H, MA W T, et al. Research progress of energy storage technology in China in 2021 [J]. Energy storage science and technology, 2022, 11(3): 1052-1076. DOI:  10.19799/j.cnki.2095-4239.2023.0330.
[2] 郭祚刚, 马溪原, 雷金勇, 等. 压缩空气储能示范进展及商业应用场景综述 [J]. 南方能源建设, 2019, 6(3): 17-26. DOI:  10.16516/j.gedi.issn2095-8676.2019.03.003.

GUO Z G, MA X Y, LEI J Y, et al. Review on demonstration progress and commercial application scenarios of compressed air energy storage system [J]. Southern energy construction, 2019, 6(3): 17-26. DOI:  10.16516/j.gedi.issn2095-8676.2019.03.003.
[3] 何青, 罗宁, 刘文毅. 基于全寿命周期成本的压缩空气储能系统储气装置经济性分析 [J]. 化工进展, 2018, 37(增刊1): 67-74. DOI:  10.16085/j.issn.1000-6613.2018-1116.

HE Q, LUO N, LIU W Y. Economic analysis of gas storage devices for compressed air energy storage system based on life cycle cost [J]. Chemical industry and engineering progress, 2018, 37(Suppl. 1): 67-74. DOI:  10.16085/j.issn.1000-6613.2018-1116.
[4] 孙潇, 朱光涛, 裴爱国. 液化空气储能基本循环的热力学分析 [J]. 南方能源建设, 2022, 9(4): 53-62. DOI:  10.16516/j.gedi.issn2095-8676.2022.04.007.

SUN X, ZHU G T, PEI A G. Thermodynamic analysis of basic cycles of liquid air energy storage system [J]. Southern energy construction, 2022, 9(4): 53-62. DOI:  10.16516/j.gedi.issn2095-8676.2022.04.007.
[5] QI M, PARK J, LEE I, et al. Liquid air as an emerging energy vector towards carbon neutrality: a multi-scale systems perspective [J]. Renewable and sustainable energy reviews, 2022, 159: 112201. DOI:  10.1016/j.rser.2022.112201.
[6] OSORIO J D, PANWAR M, RIVERA-ALVAREZ A, et al. Enabling thermal efficiency improvement and waste heat recovery using liquid air harnessed from offshore renewable energy sources [J]. Applied energy, 2020, 275: 115351. DOI:  10.1016/j.apenergy.2020.115351.
[7] 赵明, 陈星, 梁俊宇, 等. 基于液态空气储能技术的新型整体煤气化联合循环系统分析 [J]. 化工进展, 2015, 34(增刊1): 75-79.

ZHAO M, CHEN X, LIANG J Y, et al. Thermodynamic analysis of a novel IGCC system based on LAES technology [J]. Chemical industry and engineering progress, 2015, 34(Suppl. 1): 75-79.
[8] GUIZZI G L, MANNO M, TOLOMEI L M, et al. Thermodynamic analysis of a liquid air energy storage system [J]. Energy, 2015, 93: 1639-1647. DOI:  10.1016/j.energy.2015.10.030.
[9] MORGAN R, NELMES S, GIBSON E, et al. An analysis of a large-scale liquid air energy storage system [J]. Proceedings of the institution of civil engineers - energy, 2015, 168(2): 135-144. DOI:  10.1680/ener.14.00038.
[10] GUO H, XU Y J, CHEN H S, et al. Thermodynamic characteristics of a novel supercritical compressed air energy storage system [J]. Energy conversion and management, 2016, 115: 167-177. DOI:  10.1016/j.enconman.2016.01.051.
[11] SCIACOVELLI A, VECCHI A, DING Y. Liquid air energy storage (LAES) with packed bed cold thermal storage – from component to system level performance through dynamic modelling [J]. Applied energy, 2017, 190: 84-98. DOI:  10.1016/j.apenergy.2016.12.118.
[12] PENG X D, SHE X H, CONG L, et al. Thermodynamic study on the effect of cold and heat recovery on performance of liquid air energy storage [J]. Applied energy, 2018, 221: 86-99. DOI:  10.1016/j.apenergy.2018.03.151.
[13] TAFONE A, BORRI E, COMODI G, et al. Liquid air energy storage performance enhancement by means of organic Rankine cycle and absorption chiller [J]. Applied energy, 2018, 228: 1810-1821. DOI:  10.1016/j.apenergy.2018.06.133.
[14] LIN X P, WANG L, XIE N N, et al. Thermodynamic analysis of the cascaded packed bed cryogenic storage based supercritical air energy storage system [J]. Energy procedia, 2019, 158: 5079-5085. DOI:  10.1016/j.egypro.2019.01.639.
[15] 谢英柏, 薛晓东. 液化空气储能与发电一体化系统的性能分析 [J]. 太阳能学报, 2020, 41(4): 333-339. DOI:  10.19912/j.0254-0096.2020.04.046.

XIE Y B, XUE X D. Performance analysis on an integrated system of liquefied air energy storage and electricity production [J]. Acta energiae solaris sinica, 2020, 41(4): 333-339. DOI:  10.19912/j.0254-0096.2020.04.046.
[16] 潘崇耀, 蒋庆峰, 冯国增, 等. 利用LNG冷能的液化空气储能系统热力学分析 [J]. 低温与超导, 2022, 50(8): 57-63. DOI:  10.16711/j.1001-7100.2022.08.009.

PAN C Y, JIANG Q F, FENG G Z, et al. Thermodynamic analysis of liquefied air energy storage system by using LNG cold energy [J]. Cryogenics & superconductivity, 2022, 50(8): 57-63. DOI:  10.16711/j.1001-7100.2022.08.009.
[17] 苏要港, 吴晓南, 廖柏睿, 等. 耦合LNG冷能及ORC的新型液化空气储能系统分析 [J]. 储能科学与技术, 2022, 11(6): 1996-2006. DOI:  10.19799/j.cnki.2095-4239.2021.0700.

SU Y G, WU X N, LIAO B R, et al. Analysis of novel liquefied-air energy-storage system coupled with LNG cold energy and ORC [J]. Energy storage science and technology, 2022, 11(6): 1996-2006. DOI:  10.19799/j.cnki.2095-4239.2021.0700.
[18] BORRI E, TAFONE A, ZSEMBINSZKI G, et al. Recent trends on liquid air energy storage: a bibliometric analysis [J]. Applied sciences, 2020, 10(8): 2773. DOI:  10.3390/app10082773.
[19] MORGAN R, NELMES S, GIBSON E, et al. Liquid air energy storage - analysis and first results from a pilot scale demonstration plant [J]. Applied energy, 2015, 137: 845-853. DOI:  10.1016/j.apenergy.2014.07.109.
[20] SCIACOVELLI A, SMITH D, NAVARRO M E, et al. Performance analysis and detailed experimental results of the first liquid air energy storage plant in the world [J]. Journal of energy resources technology, 2018, 140(2): 20908. DOI:  10.1115/1.4038378.
[21] HAMDY S, MOSER F, MOROSUK T, et al. Exergy-based and economic evaluation of liquefaction processes for cryogenics energy storage [J]. Energies, 2019, 12(3): 493. DOI:  10.3390/en12030493.
[22] 王晨, 折晓会, 张小松. 含空气净化过程的液态空气储能热力学研究 [J]. 化工学报, 2020, 71(增刊1): 23-30. DOI:  10.11949/0438-1157.20191131.

WANG C, SHE X H, ZHANG X S. Thermodynamic study of liquid air energy storage with air purification unit [J]. CIESC journal, 2020, 71(Suppl. 1): 23-30. DOI:  10.11949/0438-1157.20191131.
[23] BORRI E, TAFONE A, ROMAGNOLI A, et al. A review on liquid air energy storage: history, state of the art and recent developments [J]. Renewable and sustainable energy reviews, 2021, 137: 110572. DOI:  10.1016/j.rser.2020.110572.