[1] AL-SHETWI A Q. Sustainable development of renewable energy integrated power sector: trends, environmental impacts, and recent challenges [J]. Science of the total environment, 2022, 822: 153645. DOI:  10.1016/J.SCITOTENV.2022.153645.
[2] BAGHERI G, RANZI E, PELUCCHI M, et al. Comprehensive kinetic study of combustion technologies for low environmental impact: MILD and OXY-fuel combustion of methane [J]. Combustion and flame, 2020, 212: 142-155. DOI:  10.1016/j.combustflame.2019.10.014.
[3] 胡尔江, 黄佐华, 郑建军, 等. 甲烷-氢气-空气预混火焰层流燃烧速度及NO生成的数值研究 [J]. 国际氢能杂志, 2009, 34(15): 6545-6557. DOI:  10.1016/j.ijhydene.2009.05.080.

HU E J, HUANG Z H, ZHENG J J, et al. Numerical study on laminar burning velocity and NO formation of premixed methane–hydrogen–air flames [J]. International journal of hydrogen energy, 2009, 34(15): 6545-6557. DOI:  10.1016/j.ijhydene.2009.05.080.
[4] 何易团, 梁孟清, 刘春志, 等. 甲烷/空气非混合层流火焰加氢动力学激励 [J]. 国际氢能杂志, 2021, 46(27): 14813-14823. DOI:  10.1016/J.IJHYDENE.2021.01.230.

HE Y T, LIANG M Q, LIU C Z, et al. Kinetic incentive of hydrogen addition on nonpremixed laminar methane/air flames [J]. International journal of hydrogen energy, 2021, 46(27): 14813-14823. DOI:  10.1016/J.IJHYDENE.2021.01.230.
[5] 魏志龙, 何震, 甄海生, 等. H2和CO2添加对富氢沼气混合物层流火焰速度耦合影响的动力学建模研究 [J]. 国际氢能杂志, 2020, 45(51): 27891-27903. DOI:  10.1016/j.ijhydene.2020.07.119.

WEI Z L, HE Z, ZHEN H S, et al. Kinetic modeling investigation on the coupling effects of H2 and CO2 addition on the laminar flame speed of hydrogen enriched biogas mixture [J]. International journal of hydrogen energy, 2020, 45(51): 27891-27903. DOI:  10.1016/j.ijhydene.2020.07.119.
[6] 胡国平, 陈超, 陆海顺, 等. 电氢路线图的技术进展、障碍和解决方案综述 [J]. 工程, 2020, 6(12): 1364-1380. DOI:  10.1016/j.eng.2020.04.016.

HU G P, CHEN C, LU H S, et al. A review of technical advances, barriers, and solutions in the power to hydrogen (P2H) roadmap [J]. Engineering, 2020, 6(12): 1364-1380. DOI:  10.1016/j.eng.2020.04.016.
[7] ROBINSON A E, FUNKE H H W, HENDRICK P, et al. Development of a hydrogen fuelled 1 kW ultra micro gas turbine with special respect to designing, testing and mapping of the µ-scale combustor [C]//2008 IEEE International Conference on Sustainable Energy Technologies, Singapore, November 24-27, 2008. Singapore: IEEE, 2008: 656-660. DOI:  10.1109/ICSET.2008.4747088.
[8] TAAMALLAH S, VOGIATZAKI K, ALZAHRANI F M, et al. Fuel flexibility, stability and emissions in premixed hydrogen-rich gas turbine combustion: technology, fundamentals, and numerical simulations [J]. Applied energy, 2015, 154: 1020-1047. DOI:  10.1016/j.apenergy.2015.04.044.
[9] RASHWAN S S, NEMITALLAH M A, HABIB M A. Review on premixed combustion technology: stability, emission control, applications, and numerical case study [J]. Energy & fuels, 2016, 30(12): 9981-10014. DOI:  10.1021/acs.energyfuels.6b02386.
[10] LIEUWEN T, YANG V, YETTER R. Synthesis gas combustion: fundamentals and applications [M]. Boca Raton: CRC Press, 2009. DOI:  10.1201/9781420085358.
[11] 任飞, 储华强, 项龙凯, 等. 氢气添加对天然气主要组分层流预混燃烧特性的影响 [J]. 能源研究所学报, 2019, 92(4): 1178-1190 DOI:  10.1016/j.joei.2018.05.011.

REN F, CHU H Q, XIANG L K, et al. Effect of hydrogen addition on the laminar premixed combustion characteristics the main components of natural gas [J]. Journal of the energy institute, 2019, 92(4): 1178-1190. DOI:  10.1016/j.joei.2018.05.011.
[12] SMITH G P, GOLDEN D M, FRENKLACH M, et al. GRI–mech 3.0 [EB/OL]. (1999) [2023-04-23] .http://combustion.berkeley.edu/gri-mech/version30/text30.html.
[13] Combustion Research Group. Combustion research at UC San Diego [EB/OL]. [2023-04-23]. https://web.eng.ucsd.edu/mae/groups/combustion.
[14] 吴志军, 赵文伯, 张青, 等. 基于热氛围燃烧器的湍流射流起升火焰基础研究进展 [J]. 吉林大学学报(工学版), 2016, 46(6): 1881-1891. DOI:  10.13229/j.cnki.jdxbgxb201606017.

WU Z J, ZHAO W B, ZHANG Q, et al. Progress in basic research of turbulent spray lifted flame based on controllable active thermos-atmosphere combustor [J]. Journal of Jilin University (engineering and technology edition), 2016, 46(6): 1881-1891. DOI:  10.13229/j.cnki.jdxbgxb201606017.
[15] DIRRENBERGER P, GLAUDE P A, GALL H L, et al. Laminar flame velocity of components of natural gas [C]//ASME 2011 Turbo Expo: Turbine Technical Conference and Exposition, Vancouver, Canada, June 6-10, 2011. Vancouver: ASME, 2011. DOI:  10.1115/GT2011-46312.
[16] 何勇, 王志华, 杨丽, 等. 基于激光本生法和动力学模拟的典型合成气层流火焰速度研究 [J]. 燃料, 2012, 95: 206-213 DOI:  10.1016/j.fuel.2011.09.056.

HE Y, WANG Z H, YANG L, et al. Investigation of laminar flame speeds of typical syngas using laser based Bunsen method and kinetic simulation [J]. Fuel, 2012, 95: 206-213. DOI:  10.1016/j.fuel.2011.09.056.
[17] GOSWAMI M, DERKS S C R, COUMANS K, et al. The effect of elevated pressures on the laminar burning velocity of methane + air mixtures [J]. Combustion and flame, 2013, 160(9): 1627-1635. DOI:  10.1016/j.combustflame.2013.03.032.
[18] NONAKA H O B, PEREIRA F M. Experimental and numerical study of CO2 content effects on the laminar burning velocity of biogas [J]. Fuel, 2016, 182: 382-390. DOI:  10.1016/j.fuel.2016.05.098.
[19] BOUSHAKI T, DHUÉ Y, SELLE L, et al. Effects of hydrogen and steam addition on laminar burning velocity of methane–air premixed flame: experimental and numerical analysis [J]. International journal of hydrogen energy, 2012, 37(11): 9412-9422. DOI:  10.1016/j.ijhydene.2012.03.037.
[20] HALTER F, CHAUVEAU C, DJEBAÏLI-CHAUMEIX N, et al. Characterization of the effects of pressure and hydrogen concentration on laminar burning velocities of methane–hydrogen–air mixtures [J]. Proceedings of the combustion institute, 2005, 30(1): 201-208. DOI:  10.1016/j.proci.2004.08.195.
[21] BERWAL P, SOLAGAR S, KUMAR S. Experimental investigations on laminar burning velocity variation of CH4+H2+air mixtures at elevated temperatures [J]. International journal of hydrogen energy, 2022, 47(37): 16686-16697. DOI:  10.1016/J.IJHYDENE.2022.03.155.
[22] 胡尔江, 黄佐华, 何佳佳, 等. 甲烷-氢气-空气预混火焰层流燃烧特性的实验与数值研究 [J]. 国际氢能杂志, 2009, 34(11): 4876-4888 DOI:  10.1016/j.ijhydene.2009.03.058.

HU E J, HUANG Z H, HE J J, et al. Experimental and numerical study on laminar burning characteristics of premixed methane–hydrogen–air flames [J]. International journal of hydrogen energy, 2009, 34(11): 4876-4888. DOI:  10.1016/j.ijhydene.2009.03.058.
[23] DI SARLI V, DI BENEDETTO A. Laminar burning velocity of hydrogen–methane/air premixed flames [J]. International journal of hydrogen energy, 2007, 32(5): 637-646. DOI:  10.1016/j.ijhydene.2006.05.016.
[24] ILBAS M, CRAYFORD A P, YILMAZ I, et al. Laminar-burning velocities of hydrogen–air and hydrogen–methane–air mixtures: an experimental study [J]. International journal of hydrogen energy, 2006, 31(12): 1768-1779. DOI:  10.1016/j.ijhydene.2005.12.007.
[25] TSE S D, ZHU D L, LAW C K. Morphology and burning rates of expanding spherical flames in H2/O2/inert mixtures up to 60 atmospheres [J]. Proceedings of the combustion institute, 2000, 28(2): 1793-1800. DOI:  10.1016/S0082-0784(00)80581-0.
[26] CAVANA M, LEONE P. Solar hydrogen from North Africa to Europe through greenstream: a simulation-based analysis of blending scenarios and production plant sizing [J]. International journal of hydrogen energy, 2021, 46(43): 22618-22637. DOI:  10.1016/J.IJHYDENE.2021.04.065.