[1] International Carbon Action Partnership (ICAP). Emissions trading worldwide: 2022 ICAP status report [R/OL]. (2022-03-29) [2022-04-03]. https://icapcarbonaction.com/en/publications/emissions-trading-worldwide-2022-icap-status-report.
[2] 李建林, 李光辉, 梁丹曦, 等. “双碳目标”下可再生能源制氢技术综述及前景展望 [J]. 分布式能源, 2021, 6(5): 1-9. DOI:  10.16513/j.2096-2185.de.2106528.

LI J L, LI G H, LIANG D X, et al. Review and prospect of hydrogen production technology from renewable energy under targets of carbon peak and carbon neutrality [J]. Distributed energy, 2021, 6(5): 1-9. DOI:  10.16513/j.2096-2185.de.2106528.
[3] International Energy Agency (IEA). The role of low-carbon fuels in the clean energy transitions of the power sector [R]. Paris: IEA, 2021.
[4] 廖远旭, 董英瑞, 孙翔, 等. 可再生能源制氢综合能源管理平台研究 [J]. 南方能源建设, 2022, 9(4): 47-52. DOI:  10.16516/j.gedi.issn2095-8676.2022.04.006.

LIAO Y X, DONG Y R, SUN X et al. Research on comprehensive energy management platform for hydrogen production from renewable energy [J]. Southern energy construction, 2022, 9(4): 47-52. DOI:  10.16516/j.gedi.issn2095-8676.2022.04.006.
[5] 滕玥. 《新时代的中国能源发展》白皮书发布 引领中国能源迈入高质量发展阶段 [J]. 环境经济, 2021(2): 20-23.

TENG Y. The release of the white paper "China's energy development in the new era" leads China's energy into a high quality development stage [J]. Environmental economy, 2021(2): 20-23.
[6] 罗佐县, 曹勇. 氢能产业发展前景及其在中国的发展路径研究 [J]. 中外能源, 2020, 25(2): 9-15.

LUO Z X, CAO Y. Development prospect of hydrogen energy industry and its development path in China [J]. Sino-global energy, 2020, 25(2): 9-15.
[7] 戴凡博. PEM电解水制氢催化剂及直接耦合光伏发电系统建模研究 [D]. 杭州: 浙江大学, 2020. DOI: 10.27461/d.cnki.gzjdx.2020.000604.

DAI F B. Study of catalyst in PEM water electrolysis and directly coupling photovoltaic system simulation [D]. Hangzhou: Zhejiang University, 2020. DOI: 10.27461/d.cnki.gzjdx.2020.000604.
[8] 何青, 孟照鑫, 沈轶, 等. “双碳”目标下我国氢能政策分析与思考 [J]. 热力发电, 2021, 50(11): 27-36. DOI:  10.19666/j.rlfd.202104071.

HE Q, MENG Z X, SHEN Y, et al. Analysis and thinking of hydrogen energy policies in China under "double carbon" target [J]. Thermal power generation, 2021, 50(11): 27-36. DOI:  10.19666/j.rlfd.202104071.
[9] 刘坚, 钟财富. 我国氢能发展现状与前景展望 [J]. 中国能源, 2019, 41(2): 32-36. DOI:  10.3969/j.issn.1003-2355.2019.02.007.

LIU J, ZHONG C F. Current status and prospects of hydrogen energy development in China [J]. Energy of China, 2019, 41(2): 32-36. DOI:  10.3969/j.issn.1003-2355.2019.02.007.
[10] 张克金, 马亮, 姜明慧, 等. 我国绿色氨能源技术与产业展望 [J]. 汽车文摘, 2023(1): 25-33. DOI:  10.19822/j.cnki.1671-6329.20210281.

ZHANG K J, MA L, JIANG M H, et al. Green ammonia energy technologies and industrial prospects in China [J]. Automotive digest, 2023(1): 25-33. DOI:  10.19822/j.cnki.1671-6329.20210281.
[11] 滕霖, 尹鹏博, 聂超飞, 等. “氨-氢”绿色能源路线及液氨储运技术研究进展 [J]. 油气储运, 2022, 41(10): 1115-1129. DOI:  10.6047/j.issn.1000-8241.2022.10.001.

TENG L, YIN P B, NIE C F, et al. Research progress on "ammonia-hydrogen" green energy roadmap and storage & transportation technology of liquid ammonia [J]. Oil & gas storage and transportation, 2022, 41(10): 1115-1129. DOI:  10.6047/j.issn.1000-8241.2022.10.001.
[12] 徐也茗, 郑传明, 张韫宏. 氨能源作为清洁能源的应用前景 [J]. 化学通报, 2019, 82(3): 214-220. DOI:  10.14159/j.cnki.0441-3776.2019.03.004.

XU Y M, ZHENG C M, ZHANG Y H. Application prospect of ammonia energy as clean energy [J]. Chemistry, 2019, 82(3): 214-220. DOI:  10.14159/j.cnki.0441-3776.2019.03.004.
[13] 罗志斌, 孙潇, 孙翔, 等. 氢能与储能耦合发展的机遇与挑战 [J]. 南方能源建设, 2022, 9(4): 24-31. DOI:  10.16516/j.gedi.issn2095-8676.2022.04.003.

LUO Z B, SUN X, SUN X, et al. The coupling development of hydrogen and energy storage technology: opportunities and challenges [J]. Southern energy construction, 2022, 9(4): 24-31. DOI:  10.16516/j.gedi.issn2095-8676.2022.04.003.
[14] 刘恒源, 王海辉, 徐建鸿. 电催化氮还原合成氨电化学系统研究进展 [J]. 化工学报, 2022, 73(1): 32-45. DOI:  10.11949/0438-1157.20210885.

LIU H Y, WANG H H, XU J H. Advances in electrochemical systems for ammonia synthesis by electrocatalytic reduction of nitrogen [J]. CIESC journal, 2022, 73(1): 32-45. DOI:  10.11949/0438-1157.20210885.
[15] LAZOUSKI N, SCHIFFER Z J, WILLIAMS K, et al. Understanding continuous lithium-mediated electrochemical nitrogen reduction [J]. Joule, 2019, 3(4): 1127-1139. DOI:  10.1016/j.joule.2019.02.003.
[16] 张开臣, 陈蔚蔚, 吴海峰. 合成氨催化技术与工艺进展 [J]. 当代化工研究, 2023(5): 155-157. DOI:  10.20087/j.cnki.1672-8114.2023.05.050.

ZHANG K C, CHEN W W, WU H F. Process research and consideration of catalytic technology for ammonia synthesis [J]. Modern chemical research, 2023(5): 155-157. DOI:  10.20087/j.cnki.1672-8114.2023.05.050.
[17] 崔元帅, 周俊波, 武禹桐,. 绿氨的应用研究进展 [J]. 应用化工, 2022, 51(11): 3300-3303. DOI:  10.3969/j.issn.1671-3206.2022.11.037.

CUI Y S, ZHOU J B, WU Y T, et al. Research progress in the application of green ammonia [J]. Applied chemical industry, 2022, 51(11): 3300-3303. DOI:  10.3969/j.issn.1671-3206.2022.11.037.
[18] 白秀娟, 刘春梅, 兰维娟, 等. 甲醇能源的发展与应用现状 [J]. 能源与节能, 2020(1): 54-55,67. DOI:  10.16643/j.cnki.14-1360/td.2020.01.022.

BAI X J, LIU C M, LAN W J, et al. Development and application status of methanol energy [J]. Energy and energy conservation, 2020(1): 54-55,67. DOI:  10.16643/j.cnki.14-1360/td.2020.01.022.
[19] 白秀娟, 刘春梅, 吴凤英, 等. 甲醇制氢技术研究与应用进展 [J]. 广州化工, 2020, 48(3): 8-9,25. DOI:  10.3969/j.issn.1001-9677.2020.03.005.

BAI X J, LIU C M, WU F Y, et al. Research progress and application of methanol hydrogen production technology [J]. Guangzhou chemical industry, 2020, 48(3): 8-9,25. DOI:  10.3969/j.issn.1001-9677.2020.03.005.
[20] 林海周, 罗志斌, 裴爱国, 等. 二氧化碳与氢合成甲醇技术和产业化进展 [J]. 南方能源建设, 2020, 7(2): 14-19. DOI:  10.16516/j.gedi.issn2095-8676.2020.02.002.

LIN H Z, LUO Z B, PEI A G, et al. Technology and industrialization progress on methanol synthesis from carbon dioxide and hydrogen [J]. Southern energy construction, 2020, 7(2): 14-19. DOI:  10.16516/j.gedi.issn2095-8676.2020.02.002.