[1] 蔡绍宽. 双碳目标的挑战与电力结构调整趋势展望 [J]. 南方能源建设, 2021, 8(3): 8-17. DOI:  10.16516/j.gedi.issn2095-8676.2021.03.002.

CAI S K. Challenges and prospects for the trends of power structure adjustment under the goal of carbon peak and neutrality [J]. Southern Energy Construction, 2021, 8(3): 8-17. DOI:  10.16516/j.gedi.issn2095-8676.2021.03.002.
[2] 高翔, 万元熙, 丁宁, 等. 可控核聚变科学技术前沿问题和进展 [J]. 中国工程科学, 2018, 20(3): 25-31. DOI:  10.15302/J-SSCAE-2018.03.004.

GAO X, WAN Y X, DING N, et al. Frontier issues and progress of controlled nuclear fusion science and technology [J]. Strategic Study of CAE, 2018, 20(3): 25-31. DOI:  10.15302/J-SSCAE-2018.03.004.
[3] 李建刚. 托卡马克研究的现状及发展 [J]. 物理, 2016, 45(2): 88-97. DOI:  10.7693/wl20160203.

LI J G. The status and progress of tokamak research [J]. Physics, 2016, 45(2): 88-97. DOI:  10.7693/wl20160203.
[4] 万宝年, 徐国盛. EAST全超导托卡马克高约束稳态运行实验研究进展 [J]. 中国科学:物理学 力学 天文学, 2019, 49(4): 47-59. DOI:  10.1360/SSPMA2018-00233.

WAN B N, XU G S. Advances in experimental research towards high confinement and steady state operation on the experimental advanced superconducting tokamak [J]. Scientia Sinica (Physica, Mechanica & Astronomica), 2019, 49(4): 47-59. DOI:  10.1360/SSPMA2018-00233.
[5] SZOGRADI M, NORRMAN S, BUBELIS E. Dynamic modelling of the helium-cooled DEMO fusion power plant with an auxiliary boiler in Apros [J]. Fusion Engineering and Design, 2020, 160: 111970. DOI:  10.1016/j.fusengdes.2020.111970.
[6] MALINOWSKI L, LEWANDOWSKA M, BUBELIS E, et al. Design and analysis of the secondary circuit of the DEMO fusion power plant for the HCPB BB option without the energy storage system and with the auxiliary boiler [J]. Fusion Engineering and Design, 2020, 160: 112003.1-112003.5. DOI:  10.1016/j.fusengdes.2020.112003.
[7] BUBELIS E, HERING W, PEREZ-MARTIN S. Conceptual designs of PHTS, ESS and PCS for DEMO BOP with helium cooled BB concept [J]. Fusion Engineering and Design, 2018, 136: 367-371. DOI:  10.1016/j.fusengdes.2018.02.040.
[8] WARMER F, BUBELIS E. First considerations on the balance of plant for a HELIAS fusion power plant [J]. Fusion Engineering and Design, 2019, 146: 2259-2263. DOI:  10.1016/j.fusengdes.2019.03.167.
[9] BUBELIS E, HERING W, PEREZ-MARTIN S. Industry supported improved design of DEMO BOP for HCPB BB concept with energy storage system [J]. Fusion Engineering and Design, 2019, 146: 2334-2337. DOI:  10.1016/j.fusengdes.2019.03.183.
[10] BARUCCA L, BUBELIS E, CIATTAGLIA S, et al. Pre-conceptual design of EU DEMO balance of plant systems: objectives and challenges [J]. Fusion Engineering and Design, 2021, 169: 112504. DOI:  10.1016/j.fusengdes.2021.112504.
[11] MALINOWSKI L, LEWANDOWSKA M, GIANNETTI F. Design and optimization of the secondary circuit for the WCLL BB option of the EU-DEMO power plant [J]. Fusion Engineering and Design, 2021, 169: 112642. DOI:  10.1016/j.fusengdes.2021.112642.
[12] 戴涛, 曹良志, 贺清明, 等. 中国聚变工程试验堆包层的核热耦合效应研究 [J]. 原子能科学技术, 2022, 56(1): 136-145. DOI:  10.7538/yzk.2021.youxian.0519.

DAI T, CAO L Z, HE Q M, et al. Research on neutronics/thermal-hydraulics coupling effect of CFETR blanket [J]. Atomic Energy Science and Technology, 2022, 56(1): 136-145. DOI:  10.7538/yzk.2021.youxian.0519.
[13] PELAY U, LUO L A, FAN Y L, et al. Thermal energy storage systems for concentrated solar power plants [J]. Renewable and Sustainable Energy Reviews, 2017, 79: 82-100. DOI:  10.1016/j.rser.2017.03.139.
[14] 丁玉龙, 来小康, 陈海生. 储能技术及应用 [M]. 北京: 化学工业出版社, 2018.

DING Y L, LAI X K, CHEN H S. Energy storage technology and application [M]. Beijing: Chemical Industry Press, 2018.
[15] 汪翔, 陈海生, 徐玉杰, 等. 储热技术研究进展与趋势 [J]. 科学通报, 2017, 62(15): 1602-1610. DOI:  10.1360/N972016-00663.

WANG X, CHEN H S, XU Y J, et al. Advances and prospects in thermal energy storage: a critical review [J]. Chinese Science Bulletin, 2017, 62(15): 1602-1610. DOI:  10.1360/N972016-00663.
[16] PELAY U, LUO L, FAN Y, et al. Technical data for concentrated solar power plants in operation, under construction and in project [J]. Data in Brief, 2017, 13: 597-599. DOI:  10.1016/j.dib.2017.06.030.
[17] GONZALEZ-ROUBAUD E, PEREZ-OSORIO D, PRIETO C. Review of commercial thermal energy storage in concentrated solar power plants: steam vs. molten salts [J]. Renewable and Sustainable Energy Reviews, 2017, 80: 133-148. DOI:  10.1016/j.rser.2017.05.084.
[18] 汉京晓, 杨勇平, 侯宏娟. 太阳能热发电的显热蓄热技术进展 [J]. 可再生能源, 2014, 32(7): 901-905. DOI:  10.13941/j.cnki.21-1469/tk.2014.07.001.

HAN J X, YANG Y P, HOU H J. Review on sensible heat thermal energy storage in solar thermal generation [J]. Renewable Energy Resources, 2014, 32(7): 901-905. DOI:  10.13941/j.cnki.21-1469/tk.2014.07.001.
[19] 徐二树, 高维, 徐蕙, 等. 八达岭塔式太阳能热发电蒸汽蓄热器动态特性仿真 [J]. 中国电机工程学报, 2012, 32(8): 112-117. DOI:  10.13334/j.0258-8013.pcsee.2012.08.020.

XU E S, GAO W, XU H, et al. Simulation of dynamic characteristics of steam accumulators in the badaling solar power tower plant [J]. Proceedings of the CSEE, 2012, 32(8): 112-117. DOI:  10.13334/j.0258-8013.pcsee.2012.08.020.
[20] 赵玉贞, 赵小艳. 合成导热油的发展及应用 [J]. 合成润滑材料, 2010, 37(4): 19-22. DOI:  10.3969/j.issn.1672-4364.2010.04.007.

ZHAO Y Z, ZHAO X Y. Development and application of synthetic heat transfer fluids [J]. Synthetic Lubricants, 2010, 37(4): 19-22. DOI:  10.3969/j.issn.1672-4364.2010.04.007.
[21] Eastman Chemical Company. Heat transfer fluids [EB/OL]. (2022-3-20)[2022-3-20].https://www.eastman.com/Products/Pages/ProductList.aspx?categoryName=Heat+Transfer+Fluids.
[22] 王志峰. 兆瓦级塔式太阳能热发电实验电站 [J]. 现代物理知识, 2013, 25(2): 18-23. DOI:  10.13405/j.cnki.xdwz.2013.02.003.

WANG Z F. Megawatt tower solar-thermal experimental power station [J]. Modern Physics, 2013, 25(2): 18-23. DOI:  10.13405/j.cnki.xdwz.2013.02.003.
[23] 吴玉庭, 任楠, 马重芳. 熔融盐显热蓄热技术的研究与应用进展 [J]. 储能科学与技术, 2013, 2(6): 586-592. DOI:  10.3969/j.issn.2095-4239.2013.06.004.

WU Y T, REN N, MA C F. Research and application of molten salts for sensible heat storage [J]. Energy Storage Science and Technology, 2013, 2(6): 586-592. DOI:  10.3969/j.issn.2095-4239.2013.06.004.
[24] FERNANDEZ A G, GOMEZ-VIDAL J, ORO E, et al. Mainstreaming commercial CSP systems: a technology review [J]. Renewable Energy, 2019, 140: 152-176. DOI:  10.1016/j.renene.2019.03.049.
[25] 王鹏, 罗尘丁, 巨星. 光热电站熔盐传热储热技术应用 [J]. 电力勘测设计, 2017(2): 67-71. DOI:  10.13500/j.cnki.11-4908/tk.2017.02.015.

WANG P, LUO C D, JU X. Application of molten salts for heat transfer and storage technique for molten salts in concentrating solar power plant [J]. Electric Power Survey & Design, 2017(2): 67-71. DOI:  10.13500/j.cnki.11-4908/tk.2017.02.015.
[26] 孙华, 张鹏, 王建强. 传热储热用熔融硝酸盐及其腐蚀问题 [J]. 腐蚀科学与防护技术, 2017, 29(5): 567-574. DOI:  10.11903/1002.6495.2016.258.

SUN H, ZHANG P, WANG J Q. Corrosion problems related with molten nitrate salts for heat transfer and thermal storage [J]. Corrosion Science and Protection Technology, 2017, 29(5): 567-574. DOI:  10.11903/1002.6495.2016.258.
[27] International Renewable Energy Agency. Renewable technology innovation indicators: mapping progress in costs, patents and standards [EB/OL]. (2022-3-7) [2022-3-20]. https://irena.org/ publications/2022/Mar/Renewable-Technology-Innovation-Indicators.
[28] 郭晓娟, 丁旃, 秦贯丰, 等. 高温熔融盐蓄热系统的若干工程问题 [J]. 储能科学与技术, 2015, 4(1): 32-43. DOI:  10.3969/j.issn.2095-4239.2015.01.003.

GUO X J, DING Z, QIN G F, et al. A literature review on some engineering issues of high temperature molten salt thermal energy storage systems [J]. Energy Storage Science and Technology, 2015, 4(1): 32-43. DOI:  10.3969/j.issn.2095-4239.2015.01.003.
[29] 陈南岭. 导热油在工业换热过程中的应用 [J]. 石油和化工节能, 2006(1): 14-17.

CHEN N L. Applications of heat transfer oil in industrial heat exchange process [J]. Energy Conservation in Petroleum & Petrochemical Industry, 2006(1): 14-17.