[1] 黄晟, 王静宇, 郭沛, 等. 碳中和目标下能源结构优化的近期策略与远期展望 [J]. 化工进展, 2022, 41(11): 5695-5708. DOI:  10.16085/j.issn.1000-6613.2022-1209.

HUANG S, WANG J Y, GUO P, et al. Short-term strategy and long-term prospect of energy structure optimization under carbon neutrality target [J]. Chemical Industry and Engineering Progress, 2022, 41(11): 5695-5708. DOI:  10.16085/j.issn.1000-6613.2022-1209.
[2] 覃盛琼, 程朗, 何占启, 等. 风力发电系统研究与应用前景综述 [J]. 机械设计, 2021, 38(8): 1-8. DOI:  10.13841/j.cnki.jxsj.2021.08.001.

QIN S Q, CHENG L, HE Z Q, et al. Review of research and application on the wind power-generation system [J]. Journal of Machine Design, 2021, 38(8): 1-8. DOI:  10.13841/j.cnki.jxsj.2021.08.001.
[3] SÁNCHEZ S, LÓPEZ-GUTIÉRREZ J S, NEGRO V, et al. Foundations in offshore wind farms: evolution, characteristics and range of use. Analysis of main dimensional parameters in monopile foundations [J]. Journal of Marine Science and Engineering, 2019, 7(12): 441. DOI:  10.3390/jmse7120441.
[4] 孙永鑫. 近海风机超大直径单桩水平承载特性试验与数值分析 [D]. 杭州: 浙江大学, 2016.

SUN Y X. Experimental and numerical studies on a laterally loaded monopile foundation of offshore wind turbine [D]. Hangzhou: Zhejiang University, 2016.
[5] MATLOCK H. Correlation for design of laterally loaded piles in soft clay [C]//American Society of Civil Engineers. Offshore Technology Conference, Houston, Texas, April 21-23, 1970. Houston: American Society of Civil Engineers, 1970. DOI: 10.4043/1204-MS.
[6] REESE L C, COX W R, KOOP F D. Field testing and analysis of laterally loaded piles om stiff clay [C]//American Society of Civil Engineers. Offshore Technology Conference, Houston, Texas, May 4-7, 1975. Houston: American Society of Civil Engineers, 1975. DOI: 10.4043/2312-MS.
[7] MCVAY M C, NIRAULA L. Development of p-y curves for large diameter piles/drilled shafts in limestone for fbpier [R]. Gainesville: University of Florida, 2004.
[8] BROWN D A, SHIE C F. Three dimensional finite element model of laterally loaded piles [J]. Computers and Geotechnics, 1990, 10(1): 59-79. DOI:  10.1016/0266-352X(90)90008-J.
[9] KOUDA M, OKAMOTO M, TAKEMURA J, et al. Direct measurement of p-y relationships of piles in sand [C]//Japanese Geotech Soc. Proceedings of International Conference on Centrifuge 98, Tokyo, Japan, 1998. Tokyo: A A Balkema Publishers, 1998: 551-556.
[10] 朱斌, 熊根, 刘晋超, 等. 砂土中大直径单桩水平受荷离心模型试验 [J]. 岩土工程学报, 2013, 35(10): 1807-1815.

ZHU B, XIONG G, LIU J C, et al. Centrifuge modelling of a large-diameter single pile under lateral loads in sand [J]. Chinese Journal of Geotechnical Engineering, 2013, 35(10): 1807-1815.
[11] 王富强, 荣冰, 张嘎, 等. 水平循环荷载下风电机桩基础离心模型试验研究 [J]. 岩土力学, 2011, 32(7): 1926-1930. DOI:  10.16285/j.rsm.2011.07.042.

WANG F Q, RONG B, ZHANG G, et al. Centrifugal model test of pile foundation for wind power unit under cyclic lateral loading [J]. Rock and Soil Mechanics, 2011, 32(7): 1926-1930. DOI:  10.16285/j.rsm.2011.07.042.
[12] DAMGAARD M, ZANIA V, ANDERSEN L V, et al. Effects of soil–structure interaction on real time dynamic response of offshore wind turbines on monopiles [J]. Engineering Structures, 2014, 75: 388-401. DOI:  10.1016/j.engstruct.2014.06.006.
[13] DNV GL. Support structures for wind turbines: DNV-ST-0126 [S]. Oslo: DNV GL, 2018.
[14] SKAU K S, PAGE A M, KAYNIA A M, et al. REDWIN-reducing cost in offshore wind by integrated structural and geotechnical design [J]. Journal of Physics:Conference Series, 2018, 1104: 012029. DOI:  10.1088/1742-6596/1104/1/012029.
[15] ABHINAV K A, SAHA N. Dynamic analysis of monopile supported offshore wind turbines [J]. Proceedings of the Institution of Civil Engineers-Geotechnical Engineering, 2017, 170(5): 428-444. DOI:  10.1680/jgeen.16.00022.
[16] VELARDE J, VANEM E, KRAMHØFT C, et al. Probabilistic analysis of offshore wind turbines under extreme resonant response: application of environmental contour method [J]. Applied Ocean Research, 2019, 93: 101947. DOI:  10.1016/j.apor.2019.101947.
[17] LØKEN I B, KAYNIA A M. Effect of foundation type and modelling on dynamic response and fatigue of offshore wind turbines [J]. Wind Energy, 2019, 22(12): 1667-1683. DOI:  10.1002/we.2394.
[18] WINKLER E. Die lehre von elastizitat und festigkeit [M]. Prague: Dominicus, 1867.
[19] American Petroleum Institute (API). Petroleum and natural gas industries-specific requirements for offshore structures: part 4-geotechnical and foundation design considerations: ISO 19901-4: 2016 [S]. New York: American Petroleum Institute, 2016.
[20] BERGUA R, ROBERTSON A, JONKMAN J, et al. OC6 phase II: Integration and verification of a new soil–structure interaction model for offshore wind design [J]. Wind Energy, 2022, 25(5): 793-810. DOI:  10.1002/we.2698.
[21] BAZEOS N, HATZIGEORGIOU G D, HONDROS I D, et al. Static, seismic and stability analyses of a prototype wind turbine steel tower [J]. Engineering Structures, 2002, 24(8): 1015-1025. DOI:  10.1016/S0141-0296(02)00021-4.
[22] LAVASSAS I, NIKOLAIDIS G, ZERVAS P, et al. Analysis and design of the prototype of a steel 1 MW wind turbine tower [J]. Engineering Structures, 2003, 25(8): 1097-1106. DOI:  10.1016/S0141-0296(03)00059-2.
[23] PAGE A M, GRIMSTAD G, EIKSUND G R, et al. A macro-element model for multidirectional cyclic lateral loading of monopiles in clay [J]. Computers and Geotechnics, 2019, 106: 314-326. DOI:  10.1016/j.compgeo.2018.11.007.
[24] PAGE A M, NAESS V, DE VAAL J B, et al. Impact of foundation modelling in offshore wind turbines: comparison between simulations and field data [J]. Marine Structures, 2019, 64: 379-400. DOI:  10.1016/j.marstruc.2018.11.010.