[1] 白暴力, 程艳敏, 白瑞雪. 新时代中国特色社会主义生态经济理论及其实践指引−绿色低碳发展助力我国“碳达峰、碳中和”战略实施 [J]. 河北经贸大学学报, 2021, 42(4): 26-36. DOI:  10.14178/j.cnki.issn1007-2101.20210701.002.

BAI B L, CHENG Y M, BAI R X. The ecological economic theory on socialism with Chinese characteristics for a new era andits practical guidelines: Green and low-carbon developmenthelps the implementation of China's strategy of "Peak Carbon Dioxide Emissions, Carbon Neutrality" [J]. Journal of Hebei University of Economics and Business, 2021, 42(4): 26-36. DOI:  10.14178/j.cnki.issn1007-2101.20210701.002.
[2] 田汝冰, 杨玉鹏, 刘志武, 等. 风电机组参与电网一次调频的控制策略研究 [J]. 黑龙江电力, 2015, 37(1): 42-48. DOI:  10.13625/j.cnki.hljep.2015.01.010.

TIAN R B, YANG Y P, LIU Z W, et al. Research on primary frequency control for power system with participation of wind turbines [J]. Heilongjiang Electric Power, 2015, 37(1): 42-48. DOI:  10.13625/j.cnki.hljep.2015.01.010.
[3] 王建君. AGC方式下火电机组间负荷优化分配方法研究 [D]. 吉林: 东北电力大学, 2011.

WANG J J. Study on the method for optimal load dispatch of thermal power units under the AGC mode [D]. Jilin: Northeast Electric Power University, 2011.
[4] 盛锴, 邹鑫, 邱靖, 等. 火电机组一次调频功率响应特性精细化建模 [J]. 中国电力, 2021, 54(6): 111-118+152. DOI:  10.11930/j.issn.1004-9649.202101111.

SHENG K, ZOU X, QIU J, et al. Refined modeling for power response characteristic of thermal power unit under primary frequency control [J]. China Electric Power, 2021, 54(6): 111-118+152. DOI:  10.11930/j.issn.1004-9649.202101111.
[5] 周艺环, 刘正, 吴子豪. 水火电力系统短期节能发电优化调度的研究 [J]. 电气技术, 2017, 18(9): 66-71. DOI:  10.3969/j.issn.1673-3800.2017.09.020.

ZHOU Y H, LIU Z, WU Z H. Research on optimal dispatch of short-term energy-saving power generation in hydro thermal power system [J]. Electrical technology, 2017, 18(9): 66-71. DOI:  10.3969/j.issn.1673-3800.2017.09.020.
[6] 殷建华, 于海存, 霍红岩, 等. 基于电网考核细则的火电机组一次调频优化 [J]. 内蒙古电力技术, 2019, 37(3): 77-82+86. DOI:  10.3969/j.issn.1008-6218.2019.03.023.

YIN J H, YU H C, HUO H Y, et al. Optimization of primary frequency compensation for thermal units based on power grid examination rules [J]. Inner Mongolia Electric Power, 2019, 37(3): 77-82+86. DOI:  10.3969/j.issn.1008-6218.2019.03.023.
[7] 吴欣, 吴宁, 孙海涛等. 火电机组一次调频性能提升实践 [J]. 山东电力技术, 2018, 45(3): 65-68. DOI:  10.3969/j.issn.1007-9904.2018.03.015.

WU X, WU N, SUN H T, et al. Practice of improving the performance of primary frequency regulation of thermal power unit [J]. Shandong Electric Power, 2018, 45(3): 65-68. DOI:  10.3969/j.issn.1007-9904.2018.03.015.
[8] 李强. 700 MW机组调频辅助服务控制系统优化提升 [J]. 南方能源建设, 2021, 8(3): 114-121. DOI:  10.16516/j.gedi.issn2095-8676.2021.03.017.

LI Q. Optimization and improvement of frequency modulation auxiliary service control system for the 700 MW unit [J]. Southern Energy construction, 2021, 8(3): 114-121. DOI:  10.16516/j.gedi.issn2095-8676.2021.03.017.
[9] 庄义飞. 火电机组一次调频分析及性能优化 [J]. 黑龙江电力, 2019, 41(2): 151-157+162. DOI:  10.13625/j.cnki.hljep.2019.02.013.

ZHUANG Y F. Primary frequency modulation analysis and performance optimization of thermal power units [J]. Heilongjiang Electric Power, 2019, 41(2): 151-157+162. DOI:  10.13625/j.cnki.hljep.2019.02.013.
[10] 余海鹏, 康剑南. 660 MW等级超超临界机组的进汽调节方式分析 [J]. 内蒙古科技与经济, 2017, 21(16): 108-109.

YU H P, KANG J N. Analysis of inlet steam regulation mode of the 660 MW ultra-supercritical unit [J]. Inner Mongolia Science Technology & Economy, 2017, 21(16): 108-109.
[11] 杜洋洋, 冯伟忠. 基于弹性回热技术的调频性能研究 [J]. 华东电力, 2014, 42(9): 1944-1949.

DU Y Y, FENG W Z. Research of properties of frequency regulation based on the flexible extraction technology [J]. East China electric power, 2014, 42(9): 1944-1949.
[12] 刘吉臻, 王耀函, 曾德良, 等. 凝结水节流参与的超超临界机组一次调频控制方法 [J]. 中国电机工程学报, 2017, 37(24): 7216-7222+7435. DOI:  10.13334/j.0258-8013.pcsee.162405.

LIU J Z, Wang Y H, ZENG D L, et al. A primary frequency regulation method of USC units based on condensate throttling [J]. Proceedings of the CSEE, 2017, 37(24): 7216-7222+7435. DOI:  10.13334/j.0258-8013.pcsee.162405.
[13] 包伟伟, 曹瑞峰, 段金鹏, 等. 1 000 MW超超临界机组一次调频技术经济性分析 [J]. 发电设备, 2018, 32(5): 348-352+356. doi:  10.3969/j.issn.1671-086X.2018.05.010

BAO W W, CAO R F, DUAN J P, et al. Techno economic analysis on primary frequency regulation technologies of a 1 000 MW ultra-supercritical unit [J]. Power Equipment, 2018, 32(5): 348-352+356. doi:  10.3969/j.issn.1671-086X.2018.05.010
[14] 李兴华, 段金鹏. 660 MW高效超超临界机组配汽方式研究及应用分析 [J]. 汽轮机技术, 2020, 62(3): 227-230. DOI:  10.3969/j.issn.1001-5884.2020.03.019.

LI X H, DUAN X P. Study and application analysis on steam inlet mode of 660 MW ultra-supercritical unit [J]. Steam Turbine Technology, 2020, 62(3): 227-230. DOI:  10.3969/j.issn.1001-5884.2020.03.019.
[15] 康浩强, 何青, 杜冬梅. 汽轮发电机组一次调频技术分析 [J]. 电力与能源, 2019, 40(2): 269-274.

KANG H Q, HE Q, DU D M. Technical analysis of primary frequency modulation for turbine generator set [J]. Power and energy, 2019, 40(2): 269-274.
[16] 高春雷. 储能技术在电力系统中的应用 [J]. 黑龙江电力, 2013, 35(5): 394-396+426. DOI:  10.13625/j.cnki.hljep.2013.05.010.

GAO C L. Application of energy storage technology in electric power system [J]. Heilongjiang Electric Power, 2013, 35(5): 394-396+426. DOI:  10.13625/j.cnki.hljep.2013.05.010.
[17] 井文辉. 电池储能参与电网辅助调频的控制策略及优化配置研究 [D]. 哈尔滨: 哈尔滨工业大学, 2018.

JING W H. Research on control strategy and optimizing configuration of battery energy storage participating in auxiliary frequency modulation of power grid [D]. Harbin: Harbin Institute of Technology, 2018.
[18] 李庆成. 电池储能辅助火电机组调频研究 [D]. 昆明: 昆明理工大学, 2020.

LI Q C. Research on frequency modulation of thermal power unit assisted by battery energy storge [D]. Kunming: Kunming University of Science and Technology, 2020.
[19] 张汝峰. 飞轮储能辅助火电机组调频技术研究 [D]. 北京: 华北电力大学(北京), 2021.

ZHANG R F. Reserch on frequency regulation technology of flywheel energy storage aided thermal power unit [D]. Beijing: North China Electric Power University(Beijing), 2021.
[20] 李林高. 电池储能系统辅助火电机组参与电网调频的控制策略优化 [D]. 太原: 山西大学, 2020.

LI L G. Control strategy optimization of battery energy storage system to assist thermal power units to participate in grid frequency modulation [D]. Taiyuan: Shanxi University, 2020.
[21] 黄登超. 300 MW供热机组飞轮储能辅助调频研究 [D]. 北京: 华北电力大学(北京), 2020.

HUANG D C. Research on flywheel energy storage auxiliary frequency modulation of 300 MW heating unit [D]. Beijing: North China Electric Power University(Beijing), 2020.
[22] 苏小林, 李丹丹, 阎晓霞, 等. 储能技术在电力系统中的应用分析 [J]. 电力建设, 2016, 37(8): 24-32. DOI:  10.3969/j.issn.1000-7229.2016.08.004.

SU X L, LI D D, YAN X X, et. al. Application analysis of energy storage technology in power system [J]. Electric Power Engineering, 2016, 37(8): 24-32. DOI:  10.3969/j.issn.1000-7229.2016.08.004.
[23] 隋云任. 飞轮储能辅助600 MW燃煤机组调频技术研究 [D]. 北京: 华北电力大学(北京), 2020.

SUI Y R. Research on frequency modulation technology of coal burning plants with aixiliary of flywheel energy storage [D]. Beijing: North China Electric Power University (Beijing), 2020.
[24] 胡尊民, 于国强, 殳建军, 等. 凝结水辅助调频控制难点分析 [J]. 热能动力工程, 2020, 35(4): 293-299. DOI:  10.16146/j.cnki.rndlgc.2020.04.040.

HU Z M, YU G Q, SHU J Y, et al. Analysis of difficulties in controlling the auxiliary frequency-modulation by condensation water [J]. Thermal Power Engineering, 2020, 35(4): 293-299. DOI:  10.16146/j.cnki.rndlgc.2020.04.040.
[25] 王伟, 陈钢, 常东锋, 等. 超级电容辅助燃煤机组快速调频技术研究 [J]. 热力发电, 2020, 49(8): 111-116. DOI:  10.19666/j.rlfd.202003091.

WANG W, CHEN G, CHANG D F, et al. Super capacitor aided fast frequency modulation technology of coal-tired unit [J]. Thermal Power Generation, 2020, 49(8): 111-116. DOI:  10.19666/j.rlfd.202003091.
[26] 王若宇. 基于粒子群算法辨识的火电机组一次调频系统建模及性能提升 [D]. 济南: 山东大学, 2020.

WANG R Y. Modeling and Performance Improvement of primary frequency modulation system of thermal power unit based on particle swarm optimization identification [D]. Jinan: Shang Dong University, 2020.
[27] 廖金龙. 大功率火电机组一次调频能力建模与优化 [D]. 杭州: 浙江大学, 2020.

LIAO J L. Primary frequency control ability modeling and optimization of large-scale thermal power units [D]. Hanzhou: Zhe Jiang University, 2020.
[28] ZHU Y, JIANG W L, KONG X D, et al. Study on nonlinear dynamics characteristics of electrohydraulic servo system [J]. Nonlinear dynamics, 2015(80): 723-737. DOI:  10.1007/s11071-015-1901-z.
[29] 李润, 徐天奇, 李琰, 等. 不同控制策略下虚拟电厂一次调频特性研究 [J]. 现代电子技术, 2021, 44(17): 95-99. DOI:  10.16652/j.issn.1004-373x.2021.17.018.

LI R, XU T Q, LI Y, et al. Study on primary frequency modulation characteristics of virtual power plant using different control strategies [J]. Modern Electronic Technology, 2021, 44(17): 95-99. DOI:  10.16652/j.issn.1004-373x.2021.17.018.
[30] 李军徽, 高卓, 李翠萍, 等. 基于动态任务系数的储能辅助风电一次调频控制策略 [J]. 电力系统自动化, 2021, 45(19): 52-59. DOI:  10.7500/AEPS20210112002.

LI J H, GAO Z, LI C P, et al. Dynamic task coefficient based primary frequency regulation of wind power assisted by energy storage [J]. Power System Automation, 2021, 45(19): 52-59. DOI:  10.7500/AEPS20210112002.
[31] 邹包产, 赵宇, 李云, 等. 基于BP神经网络的汽轮机调阀流量特性校正 [J]. 电力科学与工程, 2017, 33(5): 60-64. DOI:  10.3969/j.issn.1672-0792.2017.05.012.

ZOU B C, ZHAO Y, LI Y, et al. Correction of Flow Characteristic of Steam Turbine Governing Valve Based on BP Neural Network [J]. Electric Power Science and Engineering, 2017, 33(5): 60-64. DOI:  10.3969/j.issn.1672-0792.2017.05.012.
[32] 印佳敏, 郑赟, 杨劲. 储能火电联合调频的容量优化配置研究 [J]. 南方能源建设, 2020, 7(4): 11-17. DOI:  10.16516/j.gedi.issn2095-8676.2020.04.002.

YIN J M, ZHENG Y, YANG J. Research on Capacity Optimization of Generator-storage Combined Frequency Regulation System [J]. Southern Energy construction, 2020, 7(4): 11-17. DOI:  10.16516/j.gedi.issn2095-8676.2020.04.002.
[33] 何林轩, 李文艳. 飞轮储能辅助火电机组一次调频过程仿真分析 [J]. 储能科学与技术, 2021, 10(5): 1679-1686. DOI:  10.19799/j.cnki.2095-4239.2021.0283.

HE L X, LI W Y. Simulation of the primary frequency modulation process of thermal power units with the auxiliary of flywheel energy storage [J]. Energy Storage Science and Technology, 2021, 10(5): 1679-1686. DOI:  10.19799/j.cnki.2095-4239.2021.0283.
[34] 刘鑫, 王康平, 郭相阳, 等. 计及深度调峰与一次调频的风火负荷优化分配 [J/OL]. 电测与仪表: 1-9. (2021-05-18) [2021-11-19]. https://kns.cnki.net/kcms/detail/23.1202.TH.20210518.1121.002.html.

LIU X, WANG K P, GUO X Y, et. al. Load optimal distribution of wind power and thermal power with the coordination of deep peak regulation and primary frequency modulation [J/OL]. Electrical Measurement & Instrumentation: 1-9. (2021-05-18)[2021-11-19]. https://kns.cnki.net/kcms/detail/23.1202.TH.20210518.1121.002.html