[1] 王世明, 李泽宇, 于涛, 等. 多能互补海洋能集成发电技术研究综述 [J]. 海洋通报, 2019, 38(3): 241-249. DOI:  10.11840/j.issn.1001-6392.2019.03.001.

WANG S M, LI Z Y, YU T, et al. A review of research on multi-energy complementary ocean energy integrated power generation technology [J]. Marine Science Bulletin, 2019, 38(3): 241-249. DOI:  10.11840/j.issn.1001-6392.2019.03.001.
[2] 薛彩霞. 海洋能多能互补独立发电系统控制技术研究 [D]. 天津: 国家海洋技术中心, 2014.

XUE C X. Research on control technology of multi-energy hybrid isolated power system based on ocean energy [D]. Tianjin: National Ocean Technology Center, 2014.
[3] 张毅强. 适合与风力发电结合的波浪能及海流能共同发电型式探讨 [J]. 南方能源建设, 2018, 5(2): 60-64. doi:  10.16516/j.gedi.issn2095-8676.2018.02.007

ZHANG Y Q. Research on common generation type of wave energy and ocean current energy in conjunction with wind power generation [J]. Southern Energy Construction, 2018, 5(2): 60-64. doi:  10.16516/j.gedi.issn2095-8676.2018.02.007
[4] 史玉涛, 刘艳娇, 赵凌志. 阵列浮子式波浪能发电技术研究概述 [J]. 能源与环境, 2021(2): 12-14. DOI:  10.3969/j.issn.1672-9064.2021.02.005.

SHI Y T, LIU Y J, ZHAO L Z. Overview of array floater wave power generation technology [J]. Energy and Environment, 2021(2): 12-14. DOI:  10.3969/j.issn.1672-9064.2021.02.005.
[5] 周斌珍, 胡俭俭, 谢彬, 等. 风浪联合发电系统水动力学研究进展 [J]. 力学学报, 2019, 51(6): 1641-1649. DOI:  10.6052/0459-1879-19-202.

ZHOU B Z, HU J J, XIE B, et al. Research progress in hydrodynamics of wind-wave combined power generation system [J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(6): 1641-1649. DOI:  10.6052/0459-1879-19-202.
[6] 胡缘, 杨绍辉, 何宏舟, 等. 半潜式多浮体波浪能发电装置的水动力性能分析 [J]. 水力发电学报, 2019, 38(9): 91-101. DOI:  10.11660/slfdxb.20190910.

HU Y, YANG S H, HE H Z, et al. Hydrodynamic performance analysis of semi-submersible multi-body wave power plant [J]. Journal of Hydroelectric Engineering, 2019, 38(9): 91-101. DOI:  10.11660/slfdxb.20190910.
[7] 顾煜炯, 谢典, 耿直. 阵列浮子式波浪能发电装置的水动力性能分析 [J]. 水力发电学报, 2016, 35(8): 114-120. doi:  10.11660/slfdxb.20160814

GU Y J, XIE D, GENG Z. Hydrodynamic analysis of wave power generation devices of array buoy type [J]. Journal of Hydroelectric Engineering, 2016, 35(8): 114-120. doi:  10.11660/slfdxb.20160814
[8] 王淇. 一种新型浮式风浪能混合利用系统概念设计与性能分析 [D]. 哈尔滨: 哈尔滨工程大学, 2016.

WANG Q. The concept design and performance analysis of a new type floating hybrid wind-wave system [D]. Harbin: Harbin Engineering University, 2016.
[9] 胡俭俭, 周斌珍, 刘品, 等. 浮式风机平台与多波浪能转换装置混合系统的设计与水动力性能分析 [C]//吴有生, 邵雪明, 王军. 第三十届全国水动力学研讨会暨第十五届全国水动力学学术会议论文集(下册). 北京: 海洋出版社, 2019: 1012-1017.

HU J J, ZHOU B Z, LIU P, et al. Optimal design and performance analysis of a hybrid system of floating wind platform and multiple wave energy converters [C]//WU Y S, SHAO X M, WANG J. Proceedings of the 30th National Conference on Hydrodynamics & 15th National Congress on Hydrodynamics. Beijing: Ocean Press, 2019: 1012-1017.
[10] ROBERTSON A, JONKMAN J, MASCIOLA M, et al. Definition of the semisubmersible floating system for phase Ⅱ of OC4 [R]. Golden: NREL, 2014.
[11] 张亮, 邓慧静. 浮式风机半潜平台稳性数值分析 [J]. 应用科技, 2011, 38(10): 13-17. DOI:  10.3969/j.issn.1009-671X.2011.10.004.

ZHANG L, DENG H J. Numerical analysis on stability of the semi-submersible platform of floating wind turbines [J]. Applied Science and Technology, 2011, 38(10): 13-17. DOI:  10.3969/j.issn.1009-671X.2011.10.004.
[12] ZHOU B Z, HU J J, SUN K, et al. Motion response and energy conversion performance of a heaving point absorber wave energy converter [J]. Frontiers in Energy Research, 2020, 8: 553295. DOI:  10.3389/fenrg.2020.553295.
[13] 张恒铭. 波能装置与浮式防波堤集成系统的水动力特性研究 [D]. 哈尔滨: 哈尔滨工程大学, 2019. DOI: 10.27060/d.cnki.ghbcu.2019.000141.

ZHANG H M. Study on hydrodynamic characteristics of integrated system of wave energy converter and floating breakwater [D]. Harbin: Harbin Engineering University, 2019. DOI: 10.27060/d.cnki.ghbcu.2019.000141.
[14] ZHANG H M, ZHOU B Z, VOGEL C, et al. Hydrodynamic performance of a dual-floater hybrid system combining a floating breakwater and an oscillating-buoy type wave energy converter [J]. Applied Energy, 2020, 257: 114212. DOI:  10.1016/j.apenergy.2019.114212.
[15] HU J J, ZHOU B Z, VOGEL C, et al. Optimal design and performance analysis of a hybrid system combing a floating wind platform and wave energy converters [J]. Applied Energy, 2020, 269: 114998. DOI:  10.1016/j.apenergy.2020.114998.