[1] 饶宏, 傅闯, 朱功辉, 等. 南方电网直流融冰技术的研究与应用 [J]. 南方电网技术, 2008, 2(6): 7-12. DOI:  10.3969/j.issn.1674-0629.2008.06.002.

RAO H, FU C, ZHU G H, et al. Research & application of DC-based deicing technology in CSG [J]. Southern power system technology, 2008, 2(6): 7-12. DOI:  10.3969/j.issn.1674-0629.2008.06.002.
[2] 常浩, 石岩, 殷威扬, 等. 交直流线路融冰技术研究 [J]. 电网技术, 2008, 32(5): 1-6.

CHANG H, SHI Y, YIN W Y, et al. Ice-melting technologies for HVAC and HVDC transmission line [J]. Power system technology, 2008, 32(5): 1-6.
[3] 饶宏, 李立浧, 黎小林, 等. 南方电网直流融冰技术研究 [J]. 南方电网技术, 2008, 2(2): 7-12,36. DOI:  10.3969/j.issn.1674-0629.2008.02.002.

RAO H, LI L C, LI X L, et al. Study of DC based de-icing technology in China southern power grid [J]. Southern power system technology, 2008, 2(2): 7-12,36. DOI:  10.3969/j.issn.1674-0629.2008.02.002.
[4] 班国邦, 吕黔苏, 马晓红, 等. 直流融冰技术应用比较研究 [J]. 电力大数据, 2021, 24(9): 83-92. DOI:  10.19317/j.cnki.1008-083x.2021.09.011.

BAN G B, LÜ Q S, MA X H, et al. Comparative study on application of DC ice-melting technology [J]. Power systems and big data, 2021, 24(9): 83-92. DOI:  10.19317/j.cnki.1008-083x.2021.09.011.
[5] 谢惠藩, 朱坚, 唐金昆, 等. 直流融冰装置理论与应用的若干问题探讨 [J]. 南方电网技术, 2013, 7(3): 13-20. DOI:  10.13648/j.cnki.issn1674-0629.2013.03.006.

XIE H F, ZHU J, TANG J K, et al. Investigation on several issues of theory and application of DC De-icers [J]. Southern power system technology, 2013, 7(3): 13-20. DOI:  10.13648/j.cnki.issn1674-0629.2013.03.006.
[6] 陈亦平, 刘文涛, 和识之, 等. 直流融冰装置在南方电网的应用分析 [J]. 南方电网技术, 2011, 5(4): 74-77. DOI:  10.3969/j.issn.1674-0629.2011.04.018.

CHEN Y P, LIU W T, HE S Z, et al. Analysis on the application of DC de-icer in China southern power grid [J]. Southern power system technology, 2011, 5(4): 74-77. DOI:  10.3969/j.issn.1674-0629.2011.04.018.
[7] 陈立群, 李成博, 周启文, 等. 新型整流桥串并联切换直流融冰装置 [J]. 电力工程技术, 2022, 41(6): 230-238. DOI:  10.12158/j.2096-3203.2022.06.027.

CHEN L Q, LI C B, ZHOU Q W, et al. New DC ice-melting device with the function of series-parallel switching of rectifier bridge [J]. Electric power engineering technology, 2022, 41(6): 230-238. DOI:  10.12158/j.2096-3203.2022.06.027.
[8] 马晓红, 许逵, 林奕群, 等. 全桥MMC型直流融冰装置试验技术研究 [J]. 电力电容器与无功补偿, 2019, 40(5): 31-37. DOI:  10.14044/j.1674-1757.pcrpc.2019.05.006.

MA X H, XU K, LIN Y Q, et al. Study on the testing technology of full bridge MMC based DC deicing device [J]. Power capacitor & reactive power compensation, 2019, 40(5): 31-37. DOI:  10.14044/j.1674-1757.pcrpc.2019.05.006.
[9] 饶崇林, 毕仁明, 梁一桥, 等. 移动式全桥MMC型融冰兼STATCOM装置研制 [J]. 电力电容器与无功补偿, 2021, 42(2): 29-35. DOI:  10.14044/j.1674-1757.pcrpc.2021.02.006.

RAO C L, BI R M, LIANG Y Q, et al. Development on MMC-based mobile DC de-icing device with STATCOM function [J]. Power capacitor & reactive power compensation, 2021, 42(2): 29-35. DOI:  10.14044/j.1674-1757.pcrpc.2021.02.006.
[10] 王斌. 基于混合型MMC的直流融冰技术及应用研究 [D]. 太原: 山西大学, 2019.

WANG B. Research on DC melting technology and application based on hybrid MMC [D]. Taiyuan: Shanxi University, 2019.
[11] 张敬民, 柯祖梁, 马冬梅, 等. 大容量融冰装置系统设计与仿真 [J]. 电力电容器与无功补偿, 2016, 37(5): 113-118. DOI:  10.14044/j.1674-1757.pcrpc.2016.05.023.

ZHANG J M, KE Z L, MA D M, et al. Design and simulation of large-capacity DC ice-melting systems [J]. Power capacitor & reactive power compensation, 2016, 37(5): 113-118. DOI:  10.14044/j.1674-1757.pcrpc.2016.05.023.
[12] 蔡斌军, 李谭欣. 基于全桥型MMC的直流融冰控制方法研究 [J]. 湖南工程学报(自然科学版), 2017, 27(1): 1-9. DOI:  10.3969/j.issn.1671-119X.2017.01.001.

CAI B J, LI T X. Control of full-bridge modular multilevel converter for de ice-melting application [J]. Journal of Hunan institute of engineering (natural science edition), 2017, 27(1): 1-9. DOI:  10.3969/j.issn.1671-119X.2017.01.001.
[13] 杨立敏, 朱艺颖, 孙栩, 等. 基于损耗分析的全桥型MMC参数优化设计 [J]. 电力自动化设备, 2020, 40(3): 128-133. DOI:  10.16081/j.epae.202003017.

YANG L M, ZHU Y Y, SUN X, et al. Optimization design of full bridge MMC parameters based on loss analysis [J]. Electric power automation equipment, 2020, 40(3): 128-133. DOI:  10.16081/j.epae.202003017.
[14] 蒋纯冰, 王鑫, 赵成勇. 混合型MMC全桥子模块的配置比例优化设计 [J]. 华北电力大学学报, 2020, 47(4): 10-18. DOI:  10.3969/j.ISSN.1007-2691.2020.04.02.

JIANG C B, WANG X, ZHAO C Y. Configuration proportion optimization design of hybrid MMC full-bridge submodule [J]. Journal of North China electric power university, 2020, 47(4): 10-18. DOI:  10.3969/j.ISSN.1007-2691.2020.04.02.
[15] 毕仁明, 饶崇林, 梁一桥, 等. 全桥MMC型融冰装置充电启动策略研究 [J]. 电力电容器与无功补偿, 2021, 42(3): 132-137. DOI:  10.14044/j.1674-1757.pcrpc.2021.03.021.

BI R M, RAO C L, LIANG Y Q, et al. Study on charging start-up strategy for full bridge type MMC de-icing device [J]. Power capacitor & reactive power compensation, 2021, 42(3): 132-137. DOI:  10.14044/j.1674-1757.pcrpc.2021.03.021.
[16] 许逵, 马晓红, 胡鹏飞, 等. 全桥MMC型直流融冰技术功率模块直流电容电压纹波分析 [J]. 高电压技术, 2021, 47(2): 596-602. DOI:  10.13336/j.1003-6520.hve.20191725.

XU K, MA X H, HU P F, et al. Analysis of sub-module capacitor voltage of full bridge MMC-based deicing technology [J]. High voltage engineering, 2021, 47(2): 596-602. DOI:  10.13336/j.1003-6520.hve.20191725.
[17] 许逵, 马晓红, 饶崇林, 等. 全桥MMC型和晶闸管整流型直流融冰技术的研究与比较 [J]. 南方电网技术, 2020, 14(4): 45-53. DOI:  10.13648/j.cnki.issn1674-0629.2020.04.007.

XU K, MA X H, RAO C L, et al. Research and comparison of DC deicing technologies based on full bridge MMC and thyristor rectifier [J]. Southern power system technology, 2020, 14(4): 45-53. DOI:  10.13648/j.cnki.issn1674-0629.2020.04.007.
[18] 魏敏. 基于半桥型MMC的直流融冰和无动补偿应用研究 [D]. 太原: 山西大学, 2018.

WEI M. Research on DC melting and reactive power compensation based on half-bridge MMC [D]. Taiyuan: Shanxi University, 2018.
[19] 袁康, 吕孝国, 田智全, 等. 全桥MMC直流融冰装置设计及仿真 [J]. 辽宁科技大学学报, 2021, 44(6): 456-463. DOI:  10.13988/j.ustl.2021.06.009.

YUAN K, LV X G, TIAN Z Q, et al. Design and simulation of full bridge MMC DC ice melting device [J]. Journal of university of science and technology Liaoning, 2021, 44(6): 456-463. DOI:  10.13988/j.ustl.2021.06.009.
[20] 张翔, 丁勇, 朱炳坤, 等. 大容量直流融冰兼静止无功补偿装置的研制与应用 [J]. 电力系统自动化, 2012, 36(20): 104-108.

ZHANG X, DING Y, ZHU B K, et al. Development and application of large-capacity DC deicer/static VAR compensator [J]. Automation of electric power systems, 2012, 36(20): 104-108.