[1] 严乐. 空温式气化器综述 [J]. 云南化工, 2019, 46(8): 184-185, 188. DOI:  10.3969/j.issn.1004-275X.2019.09.053.

YAN L. A review of the air-temperature gasifier [J]. Yunnan chemical technology, 2019, 46(8): 184-185, 188. DOI:  10.3969/j.issn.1004-275X.2019.09.053.
[2] 黄中峰, 王云航, 邹伟. LNG空温式气化器结霜机理及控制技术 [J]. 煤气与热力, 2021, 41(8): 19-23, 36. DOI:  10.13608/j.cnki.1000-4416.2021.08.017.

HUANG Z F, WANG Y H, ZOU W. Frosting mechanism and control technology of LNG air temperature vaporizer [J]. Gas & heat, 2021, 41(8): 19-23, 36. DOI:  10.13608/j.cnki.1000-4416.2021.08.017.
[3] 吴晓红, 陈永东, 李志. LNG缠绕管水浴式气化器防结冰分析及对策 [J]. 设备管理与维修, 2014(5): 56-58. DOI:  10.3969/j.issn.1001-0599.2014.05.034.

WU X H, CHEN Y D, LI Z. Anti-icing analysis and countermeasures of LNG winding tube water bath gasifier [J]. Plant maintenance engineering, 2014(5): 56-58. DOI:  10.3969/j.issn.1001-0599.2014.05.034.
[4] 任乐梅, 焦文玲. LNG空温式气化器除霜判定指标及标准研究 [J]. 煤气与热力, 2020, 40(11): 21-27. DOI:  10.13608/j.cnki.1000-4416.2020.11.005.

REN L M, JIAO W L. Research on defrosting judgment index and standard of LNG ambient air temperature vaporizer [J]. Gas & heat, 2020, 40(11): 21-27. DOI:  10.13608/j.cnki.1000-4416.2020.11.005.
[5] 梅鹏程, 邓春锋, 邓欣. LNG气化器的分类及选型设计 [J]. 化学工程与装备, 2016(5): 65-70.

MEI P C, DENG C F, DENG X. Classification and selection design of LNG vaporizer [J]. Chemical engineering & equipment, 2016(5): 65-70.
[6] 黄宇, 张超, 陈海平. 液化天然气接收站关键设备和材料国产化进程研究 [J]. 现代化工, 2019, 39(4): 13-17. DOI:  10.16606/j.cnki.issn0253-4320.2019.04.003.

HUANG Y, ZHANG C, CHEN H P. China's progress in local manufacture of key equipment and materials for LNG terminal [J]. Modern chemical industry, 2019, 39(4): 13-17. DOI:  10.16606/j.cnki.issn0253-4320.2019.04.003.
[7] 刘世俊, 郭超, 雷江震, 等. 浸没燃烧式LNG气化器燃烧器的研究 [J]. 城市燃气, 2016(5): 9-13. DOI:  10.3969/j.issn.1671-5152.2016.05.002.

LIU S J, GUO C, LEI J Z, et al. Study on burner of LNG submerged combustion vaporizer [J]. Urban gas, 2016(5): 9-13. DOI:  10.3969/j.issn.1671-5152.2016.05.002.
[8] 裘栋. LNG项目气化器的选型 [J]. 化工设计, 2011, 21(4): 19-22,6. DOI:  10.3969/j.issn.1007-6247.2011.04.005.

QIU D. Type selection of evaporator for LNG project [J]. Chemical engineering design, 2011, 21(4): 19-22,6. DOI:  10.3969/j.issn.1007-6247.2011.04.005.
[9] 尹星懿. 浸没燃烧式气化器原理分析及方案优化 [J]. 城市燃气, 2014(2): 9-12. DOI:  10.3969/j.issn.1671-5152.2014.02.002.

YIN X Y. Principle analysis and scheme optimization of immersion combustion gasifier [J]. Urban gas, 2014(2): 9-12. DOI:  10.3969/j.issn.1671-5152.2014.02.002.
[10] 中华人民共和国国务院. 特种设备安全监察条例 [EB/OL]. (2003-03-11) [2021-08-09]. https://www.gov.cn/zhengce/2020-12/26/content_5574590.htm.

State Council of the PRC. Regulations on the safety supervision of special equipment [EB/OL]. (2003-03-11) [2021-08-09]. https://www.gov.cn/zhengce/2020-12/26/content_5574590.htm
[11] 杨信一, 刘筠竹, 李硕. 唐山LNG接收站浸没燃烧式气化器运行优化 [J]. 油气储运, 2018, 37(10): 1153-1157. DOI:  10.6047/j.issn.1000-8241.2018.10.011.

YANG X Y, LIU Y Z, LI S. Operation optimization of submerged combustion vaporizer in Tangshan LNG receiving station [J]. Oil & gas storage and transportation, 2018, 37(10): 1153-1157. DOI:  10.6047/j.issn.1000-8241.2018.10.011.
[12] 荀海晶. 天津LNG项目气化器选型分析 [J]. 中国造船, 2014, 55(增刊2): 138-143.

XUN H J. Selection of vaporizer in Tianjin LNG project [J]. Shipbuilding of China, 2014, 55(Suppl. 2): 138-143.
[13] 陈军, 孔令广. 浸没燃烧式汽化器的分析优化 [J]. 管道技术与设备, 2012(4): 55-57. DOI:  10.3969/j.issn.1004-9614.2012.04.020.

CHEN J, KONG L G. Analysis and optimization of submerged combustion vaporizer [J]. Pipeline technique and equipment, 2012(4): 55-57. DOI:  10.3969/j.issn.1004-9614.2012.04.020.
[14] 彭超, 刘筠竹. LNG接收站冬季气化器联运方案 [J]. 化工管理, 2014(33): 145. DOI:  10.3969/j.issn.1008-4800.2014.33.121.

PENG C, LIU Y Z. Gasifier transport scheme in winter for LNG receiving station [J]. Chemical engineering management, 2014(33): 145. DOI:  10.3969/j.issn.1008-4800.2014.33.121.
[15] 夏硕, 林剑彬, 董顺, 等. ORV和SCV冬季运行经验分析及运行优化 [J]. 石化技术, 2017, 24(3): 210. DOI:  10.3969/j.issn.1006-0235.2017.03.169.

XIA S, LIN J B, DONG S, et al. Analysis and operation optimization of ORV and SCV winter operation experience [J]. Petrochemical industry technology, 2017, 24(3): 210. DOI:  10.3969/j.issn.1006-0235.2017.03.169.
[16] 吕俊, 王蕾. 浙江LNG接收站项目气化器选型及系统优化 [J]. 天然气工业, 2008, 28(2): 132-135. DOI:  10.3787/j.issn.1000-0976.2008.02.039.

LÜ J, WANG L. Selection of vaporizer types and optimization of vaporizer system in LNG receiving terminal project of Zhejiang province [J]. Natural gas industry, 2008, 28(2): 132-135. DOI:  10.3787/j.issn.1000-0976.2008.02.039.
[17] 付子航, 宋坤, 单彤文. 空气热源式气化技术在大型LNG接收终端的应用 [J]. 天然气工业, 2012, 32(8): 100-104. DOI:  10.3787/j.issn.1000-0976.2012.08.022.

FU Z H, SONG K, SHAN T W. Application of ambient air based heating vaporizers in large LNG receiving terminals [J]. Natural gas industry, 2012, 32(8): 100-104. DOI:  10.3787/j.issn.1000-0976.2012.08.022.
[18] 氢启未来网. 液态固态储氢技术取得突破, 储运成本有望大幅下降 [EB/OL]. (2023-04-25). https://baijiahao.baidu.com/s?id=1764114884317659686&wfr=spider&for=pc.

Hydrogen Kai Future Network. Breakthrough in liquid solid hydrogen storage technology [EB/OL]. (2023-04-25). https://baijiahao.baidu.com/s?id=1764114884317659686&wfr=spider&for=pc.
[19] 矫依存. 不同气候分区LNG空温式气化器配置优化研究 [D]. 哈尔滨: 哈尔滨工业大学, 2020. DOI: 10.27061/d.cnki.ghgdu.2020.002433.

JIAO Y C. Optimization of air-temperture gasifier configuration in different climate zones [D]. Harbin: Harbin Institute of Technology, 2020. DOI: 10.27061/d.cnki.ghgdu.2020.002433.
[20] 冯道荣, 刘元向, 邓小明, 等. LNG接收站利用电厂温排水的取排水方案探讨 [J]. 南方能源建设, 2022, 9(增刊1): 36-42. DOI:  10.16516/j.gedi.issn2095-8676.2022.S1.006.

FENG D R, LIU Y X, DENG X M, et al. Discussion on the water intake and drainage schemes of LNG terminal using the thermal drainage from power plant [J]. Southern energy construction, 2022, 9(Suppl. 1): 36-42. DOI:  10.16516/j.gedi.issn2095-8676.2022.S1.006.