[1] 国家能源局. 风电场工程110 kV~220 kV海上升压变电站设计规范: NB/T 31115—2017 [S]. 北京: 中国电力出版社, 2017.

National Energy Board. Code for 110 kV~220 kV offshore substation design of wind power projects: NB/T 31115—2017 [S]. Beijing: China Electric Power Press, 2017.
[2] 中华人民共和国住房和城乡建设部. 海上风力发电场设计标准: GB/T 51308—2019 [S]. 北京: 中国计划出版社, 2019.

Ministry of Housing and Urban-Rural Development of the People's Republic of China. Standard for design of offshore wind farm: GB/T 51308—2019 [S]. Beijing: China Planning Press, 2019.
[3] XIAO F L, LIGTERINGEN H, VAN GULIJK C, et al. Comparison study on AIS data of ship traffic behavior [J]. Ocean engineering, 2015, 95: 84-93. DOI:  10.1016/j.oceaneng.2014.11.020.
[4] 徐志伟. 海上风电升压站平台设计及有限元计算分析 [J]. 内蒙古电力技术, 2022, 40(1): 44-48. DOI:  10.19929/j.cnki.nmgdljs.2022.0009.

XU Z W. Design and finite element analysis of offshore wind power booster station platform [J]. Inner Mongolia electric power, 2022, 40(1): 44-48. DOI:  10.19929/j.cnki.nmgdljs.2022.0009.
[5] 刘硕, 葛愿, 李媛媛, 等. 基于改进SSD的无人船海上船舶识别算法 [J]. 传感器与微系统, 2021, 40(2): 120-123. DOI:  10.13873/J.1000-9787(2021)02-0120-04.

LIU S, GE Y, LI Y Y, et al. Recognition algorithm of unmanned ship at sea based on improved SSD [J]. Transducer and microsystem technologies, 2021, 40(2): 120-123. DOI:  10.13873/J.1000-9787(2021)02-0120-04.
[6] 郭延华, 孙磊, 马世超, 等. 一种基于极端尺度变化的船舶识别方法研究 [J]. 计算机应用与软件, 2021, 38(1): 171-178. DOI:  10.3969/j.issn.1000-386x.2021.01.029.

GUO Y H, SUN L, MA S C, et al. A boat recognition method based on extreme scale variation [J]. Computer applications and software, 2021, 38(1): 171-178. DOI:  10.3969/j.issn.1000-386x.2021.01.029.
[7] 陈会伟, 刘树美, 刘培学, 等. 超尺度自导注意力网络的遥感船舶识别 [J]. 计算机工程, 2021, 47(10): 314-320. DOI:  10.19678/j.issn.1000-3428.0058993.

CHEN H W, LIU S M, LIU P X, et al. Remote sensing ship recognition based on hyper-scale self-guided attention networks [J]. Computer engineering, 2021, 47(10): 314-320. DOI:  10.19678/j.issn.1000-3428.0058993.
[8] 周雪芳, 刘树龙, 周海龙. 复杂环境中高可用船舶AIS大数据信息处理方法 [J]. 舰船科学技术, 2022, 44(6): 137-140. DOI:  10.3404/j.issn.1672-7649.2022.06.028.

ZHOU X F, LIU S L, ZHOU H L. High-availability ship AIS big data information processing method in complex environment [J]. Ship science and technology, 2022, 44(6): 137-140. DOI:  10.3404/j.issn.1672-7649.2022.06.028.
[9] 牟军敏, 陈鹏飞, 贺益雄, 等. 船舶AIS轨迹快速自适应谱聚类算法 [J]. 哈尔滨工程大学学报, 2018, 39(3): 428-432. DOI:  10.11990/jheu.201609033.

MOU J M, CHEN P F, HE Y X, et al. Fast self-tuning spectral clustering algorithm for AIS ship trajectory [J]. Journal of Harbin engineering university, 2018, 39(3): 428-432. DOI:  10.11990/jheu.201609033.
[10] 杨源, 阳熹, 汪少勇, 等. 海上风电场智能船舶调度及人员管理系统 [J]. 南方能源建设, 2020, 7(1): 47-52. DOI:  10.16516/j.gedi.issn2095-8676.2020.01.007.

YANG Y, YANG X, WANG S Y, et al. Scheme design of intelligent vessel dispatching and personnel management system for offshore wind farm [J]. Southern energy construction, 2020, 7(1): 47-52. DOI:  10.16516/j.gedi.issn2095-8676.2020.01.007.
[11] CHEN Y, LI W, SAKARIDIS C, et al. Domain adaptive faster R-CNN for object detection in the wild [C]//Anon. Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, USA, June 28-23, 2018. New York: IEEE, 2018: 3339-3348. DOI:  10.1109/CVPR.2018.00352.
[12] REN S Q, HE K M, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks [J]. IEEE transactions on pattern analysis and machine intelligence, 2017, 39(6): 1137-1149. DOI:  10.1109/TPAMI.2016.2577031.
[13] WU Z F, SHEN C H, VAN DEN HENGEL A. Wider or deeper: revisiting the ResNet model for visual recognition [J]. Pattern recognition, 2019, 90: 119-133. DOI:  10.1016/j.patcog.2019.01.006.
[14] 蒋圣南, 陈恩庆, 郑铭耀, 等. 基于ResNeXt的人体动作识别 [J]. 图学学报, 2020, 41(2): 277-282. DOI:  10.11996/JG.j.2095-302X.2020020277.

JIANG S N, CHEN E Q, ZHENG M Y, et al. Human action recognition based on ResNeXt [J]. Journal of graphics, 2020, 41(2): 277-282. DOI:  10.11996/JG.j.2095-302X.2020020277.
[15] SANDLER M, HOWARD A, ZHU M L, et al. MobileNetV2: inverted residuals and linear bottlenecks [C]//Anon. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, USA, June 18-23, 2018. New York: IEEE, 2018: 4510-4520. DOI:  10.1109/cvpr.2018.00474.
[16] LIN T Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection [J]. IEEE transactions on pattern analysis and machine intelligence, 2020, 42(2): 318-327. DOI:  10.1109/TPAMI.2018.2858826.
[17] 郭浩, 张晰, 安居白, 等. 基于船舶AIS信息的可疑船只监测研究 [J]. 交通信息与安全, 2013, 31(4): 67-72. DOI:  10.3963/j.issn.1674-4861.2013.04.015.

GUO H, ZHANG X, AN J B, et al. Monitoring of intrusive vessels based on an automatic identification system (AIS) [J]. Journal of transport information and safety, 2013, 31(4): 67-72. DOI:  10.3963/j.issn.1674-4861.2013.04.015.
[18] PURI D. COCO dataset stuff segmentation challenge [C]// Anon. 2019 5th International Conference on Computing, Communication, Control and Automation (ICCUBEA), Pune, India, September 19-21, 2019. New York: IEEE, 2019: 1-5. DOI: 10.1109/ICCUBEA47591.2019.9129255.
[19] WU C L, CHAU K W, FAN C. Prediction of rainfall time series using modular artificial neural networks coupled with data-preprocessing techniques [J]. Journal of hydrology, 2010, 389(1/2): 146-167. DOI:  10.1016/j.jhydrol.2010.05.040.
[20] 刘庆辉, 陆海强. 浅析海上风电施工安全管控 [J]. 南方能源建设, 2020, 7(1): 128-132. DOI:  10.16516/j.gedi.issn2095-8676.2020.01.021.

LIU Q H, LU H Q. Brief analysis on safety management and control of offshore wind farm construction [J]. Southern energy construction, 2020, 7(1): 128-132. DOI:  10.16516/j.gedi.issn2095-8676.2020.01.021.