[1] European Wind Energy Association (EWEA). The economics of wind energy [Z]. Brussels, Belgium: EWEA, 2015.
[2] SKAARE B, NIELSEN F G, HANSON T D, et al. Analysis of measurements and simulations from the Hywind Demo floating wind turbine [J]. Wind energy, 2015, 18(6): 1105-1122. DOI:  10.1002/we.1750.
[3] Global Wind Energy Council (GWEC). Global wind report 2021 [EB/OL]. (2021-11) [2023-05-20]. https://gwec.net/global-wind-report-2021/.
[4] GUILLAUME B, CHRISTIAN B, CHRISTINE B, et al. Design and performance of a TLP type floating support structure for a 6 MW offshore wind turbine [C]//Offshore Technology Conference, Houston, Texas, May 2019. Houston: Offshore Technology Conference, 2019. DOI:  10.4043/29371-MS.
[5] VITA L, RAMACHANDRAN G K V, KRIEGER A, et al. Comparison of numerical models and verification against experimental data, using pelastar TLP concept [C]//ASME 2015 34th International Conference on Ocean, Offshore and Arctic Engineering, St. John's, May 31-June 5, 2015. St. Johns: ASME, 2015. DOI:  10.1115/OMAE2015-41874.
[6] INOUE S, LIM S T. The course stability of towed boats (continued) [J]. Transaction of the West-Japan society of naval architects, 1971(43): 35-44.
[7] STRANDHAGEN A G, SCHOENHERR K E, KOBAYASHI F M. The dynamic stability on course of towed ships [J]. Society ofnaval architects and marine engineers-transactions, 1958, 58: 32-66.
[8] INOUE S, LIM S T. The course stability of towed boats-when the mass of tow rope is continued [J]. Transaction of the West-Japan society of naval architects, 1972(44): 129-140.
[9] BERNITSAS M M, KEKRIDIS N S. Nonlinear stability analysis of ship towed by elastic rope [J]. Journal of ship research, 1986, 30(2): 136-146. DOI:  10.5957/jsr.1986.30.2.136.
[10] VARYANI K. Course stability problem formulation. Gdansk Poland [C]//13th International Conference on Hydrodynamic in Ship Design (HYDRONAV 99), 2nd International Symposiums on Ship Manoeuvring (MANOEUVRING 99), 1999.
[11] COLLU M, MAGGI A, GUALENI P, et al. Stability requirements for floating offshore wind turbine (FOWT) during assembly and temporary phases: overview and application [J]. Ocean engineering, 2014, 84: 164-175. DOI:  10.1016/j.oceaneng.2014.03.018.
[12] ADAM F, MYLAND T, DAHLHAUS F, et al. GICON®-TLP for wind turbines–the path of development [C]//Soares G. The 1st International Conference on Renewable Energies Offshore (RENEW), London, November 2014, 2014. London: Taylor & Francis Group, 2014: 24-26. DOI:  10.1201/b18973-92.
[13] HYLAND T, ADAM F, DAHLIAS F, et al. Towing tests with the GICON®-TLP for wind turbines [C]//The 24th International Ocean and Polar Engineering Conference, Busan, Korea, June 2014. Busan, Korea: International Society of Offshore and Polar Engineers, 2014: 283-287.
[14] DING H Y, HAN Y Q, ZHANG P Y, et al. Dynamic analysis of a new type of floating platform for offshore wind turbine [C]//Proceedings of the 26th International Ocean and Polar Engineering Conference, Rhodes, Greece, June 26-July 1, 2016. Rhodes: The International Society of Offshore and Polar Engineers, 2016.
[15] HAN Y Q, LE C H, DING H Y, et al. Stability and dynamic response analysis of a submerged tension leg platform for offshore wind turbines [J]. Ocean engineering, 2017, 129: 68-82. DOI:  10.1016/j.oceaneng.2016.10.048.
[16] LE C H, ZHANG J, DING H Y, et al. Preliminary design of a submerged support structure for floating wind turbines [J]. Journal of ocean university of China, 2020, 19(6): 1265-1282. DOI:  10.1007/s11802-020-4427-z.
[17] ZHANG P Y, ZHAO X, DING H Y, et al. The wet-towing resistance of the composite bucket foundation for offshore wind turbines [J]. Marine structures, 2021, 80: 103089. DOI:  10.1016/j.marstruc.2021.103089.
[18] BÜTTNER T, PÉREZ-COLLAZO C, ABANADES J, et al. OrthoSpar, a novel substructure concept for floating offshore wind turbines: physical model tests under towing conditions [J]. Ocean engineering, 2022, 245: 110508. DOI:  10.1016/j.oceaneng.2021.110508.
[19] GERWICK B C J. Construction of marine and offshore structures [M]. Boca Raton: CRC Press, 2000.
[20] GAERTNER E, RINKER J, SETHURAMAN L, et al. IEA wind TCP task 37: definition of the IEA 15-Megawatt offshore reference wind turbine [R]. Golden: National Renewable Energy Lab. (NREL), 2020.