[1] 陈寅, 陈传新, 张华, 等. 换流站避雷线塔风振系数计算 [J]. 电网与清洁能源, 2011, 27(8): 50-52. DOI:  10.3969/j.issn.1674-3814.2011.08.010.

CHEN Y, CHEN C X, ZHANG H, et al. Wind vibration coefficient calculation of lightning protection tower in converter station [J]. Advances of Power System and Hydroelectric Engineering, 2011, 27(8): 50-52. DOI:  10.3969/j.issn.1674-3814.2011.08.010.
[2] 李正良, 罗熙越, 蔡青青. 考虑塔-线耦合作用的输电塔体系风振系数研究 [J]. 建筑钢结构进展, 2021, 23(3): 119-128. DOI:  10.13969/j.cnki.cn31-1893.2021.03.013.

LI Z L, LUO X Y, CAI Q Q. A study on the wind vibration coefficient of transmission tower system considering tower-line coupling effect [J]. Progress in Steel Building Structures, 2021, 23(3): 119-128. DOI:  10.13969/j.cnki.cn31-1893.2021.03.013.
[3] 原迁, 张德凯. 大跨越输电塔线体系风振响应及风振系数分析 [J]. 山西建筑, 2021, 47(6): 34-38. DOI:  10.3969/j.issn.1009-6825.2021.06.012.

YUAN Q, ZHANG D K. Analysis of wind-induced response and vibration coefficient of long-span transmission line tower [J]. Shanxi Architecture, 2021, 47(6): 34-38. DOI:  10.3969/j.issn.1009-6825.2021.06.012.
[4] 窦汉岭, 程长征. 转角输电塔线体系的风振响应分析 [J]. 合肥工业大学学报(自然科学版), 2020, 43(9): 1218-1222. DOI:  10.3969/j.issn.1003-5060.2020.09.013.

DOU H L, CHENG C Z. Analysis on wind-induced response of corner transmission tower-line system [J]. Journal of Hefei University of Technology (Natural Science Edition), 2020, 43(9): 1218-1222. DOI:  10.3969/j.issn.1003-5060.2020.09.013.
[5] 邓洪洲, 张建明, 帅群, 等. 输电钢管塔体型系数风洞试验研究 [J]. 电网技术, 2010, 34(9): 190-194. DOI:  10.13335/j.1000-3673.pst.2010.09.024.

DENG H Z, ZHANG J M, SHUAI Q, et al. Wind-tunnel investigation on pressure coefficient of steel tubular transmission tower [J]. Power System Technology, 2010, 34(9): 190-194. DOI:  10.13335/j.1000-3673.pst.2010.09.024.
[6] 邹良浩, 梁枢果, 邹垚, 等. 格构式塔架风载体型系数的风洞试验研究 [J]. 特种结构, 2008, 25(5): 41-43,68. DOI:  10.3969/j.issn.1001-3598.2008.05.013.

ZOU L H, LIANG S G, ZOU Y, et al. Investigation on wind load shape coefficient of lattice towers by wind tunnel tests [J]. Special Structures, 2008, 25(5): 41-43,68. DOI:  10.3969/j.issn.1001-3598.2008.05.013.
[7] 沈国辉, 项国通, 郭勇, 等. 圆钢输电塔架的风荷载体型系数研究 [J]. 特种结构, 2015, 32(5): 62-65,85.

SHEN G H, XIANG G T, GUO Y, et al. Research on body shape coefficients of wind loads on steel transmission towers with cylindrical members [J]. Special Structures, 2015, 32(5): 62-65,85.
[8] 林汪勇, 陈寅, 杨彪. 1000 kV变电构架位移风振系数研究 [J]. 低温建筑技术, 2013, 35(4): 75-76. DOI:  10.3969/j.issn.1001-6864.2013.04.030.

LIN W Y, CHEN Y, YANG B. Wind displacement vibration coefficient research of 1 000 kV truss structures [J]. Low Temperature Architecture Technology, 2013, 35(4): 75-76. DOI:  10.3969/j.issn.1001-6864.2013.04.030.
[9] 中华人民共和国住房和城乡建设部. 建筑结构荷载规范: GB 50009—2012 [S]. 北京: 中国建筑工业出版社, 2012.

Ministry of Housing and Urban-Rural Development of the People's Republic of China. Load code for the design of building structures: GB 50009—2012 [S]. Beijing: China Architecture & Building Press, 2012.
[10] 祝曦晨. 输电塔架及输电塔线体系等效静力风荷载研究 [D]. 武汉: 武汉大学, 2017.

ZHU X C. Investigation on equivalent static wind load of lattice towers and transmission tower-line system [D]. Wuhan: Wuhan University, 2017.
[11] 张相庭. 结构风工程: 理论·规范·实践 [M]. 北京: 中国建筑工业出版社, 2006.

ZHANG X T. Structural wind engineering: Theory·Standard·Practice [M]. Beijing: China Architecture & Building Press, 2006.
[12] 国家能源局. 变电站建筑结构设计技术规程: DL/T 5457—2012 [S]. 北京: 中国电力出版社, 2012.

National Energy Administration. Technical code for the design of substation buildings and structures: DL/T5457—2012 [S]. Beijing: China Electric Power Press, 2012.
[13] 中华人民共和国住房和城乡建设部, 国家市场监督管理总局. 高耸结构设计标准: GB 50135—2019 [S]. 北京: 中国计划出版社, 2019.

Ministry of Housing and Urban-Rural Development of the People's Republic of China, State Administration for Market Regulation. Standard for design of high-rising structures: GB 50135—2019 [S]. Beijing: China Planning Press, 2019.