[1] 田昕, 蔡旭, 贾锋. 计及电网频率波动敏感特性的双馈风电机组优化发电控制策略 [J]. 电源学报, 2022, 20(1): 141-148. DOI:  10.13234/j.issn.2095-2805.2022.1.141.

TIAN X, CAI X, JIA F. Optimal generation control strategy for DFIG considering grid frequency fluctuation sensitivity [J]. Journal of power supply, 2022, 20(1): 141-148. DOI:  10.13234/j.issn.2095-2805.2022.1.141.
[2] 蔡绍宽. 平价上网助力海上风电行业发展−未来五年海上风电从业同仁的使命 [J]. 南方能源建设, 2019, 6(2): 7-15. DOI:  10.16516/j.gedi.issn2095-8676.2019.02.002.

CAI S K. Grid parity speeds up the development of offshore wind power industry: the practitioner mission of offshore wind power in the next five years [J]. Southern energy construction, 2019, 6(2): 7-15. DOI:  10.16516/j.gedi.issn2095-8676.2019.02.002.
[3] 杨康, 谢丽军, 熊浩, 等. 考虑风-储频率响应的智能电网频率特征分析 [J/OL]. 电测与仪表, 2022: 1-10. (2022-07-04) [2023-04-01]. http://kns.cnki.net/kcms/detail/23.1202.th.20220630.2229.002.html.

YANG K, XIE L J, XIONG H, et al. Analysis of frequency characteristics of power system with wind power-energy storage participating in frequency modulation [J/OL]. Electrical measurement and instrumentation, 2022: 1-10. (2022-07-04) [2023-04-01]. http://kns.cnki.net/kcms/detail/23.1202.th.20220630.2229.002.html.
[4] 张小莲, 陈冲, 张仰飞, 等. 考虑电池运行状态的风电场储能容量优化配置 [J]. 电力系统自动化, 2022, 46(18): 199-207.

ZHANG X L, CHEN C, ZHANG Y F, et al. Optimal configuration of wind farm energy storage capacity considering battery operation state [J]. Automation of power systems, 2022, 46(18): 199-207.
[5] 吴晓刚, 吴新华, 季青锋, 等. 计及新能源不确定性的新能源场站与储能电站分布式协同优化 [J]. 浙江电力, 2022, 41(6): 54-61. doi:  10.19585/j.zjdl.202206008

WU X G, WU X H, JI Q F, et al. Distributed collaborative optimization of new energy stations and energy storage power stations taking account of the uncertainty of new energy [J]. Zhejiang electric power, 2022, 41(6): 54-61. doi:  10.19585/j.zjdl.202206008
[6] 张浩博, 向往, 文劲宇. 应对受端交流故障的海上风电柔直并网系统主动能量控制方法 [J/OL]. 中国电机工程学报, 2022: 1-16. (2022-06-16) [2023-04-01]. http://kns.cnki.net/kcms/detail/11.2107.tm.20220615.1611.006.html.

ZHANG H B, XIANG W, WEN J Y. Active energy control of offshore wind power MMC-HVDC system to handle AC faults of receiving-end power grid [J/OL]. Proceedings of the CSEE, 2022: 1-16. (2022-06-16) [2023-04-01]. http://kns.cnki.net/kcms/detail/11.2107.tm.20220615.1611.006.html.
[7] 张磊, 郭语, 石嘉豪, 等. 风火储一体化电站功率特性研究 [J]. 动力工程学报, 2022, 42(6): 568-574,581. DOI:  10.19805/j.cnki.jcspe.2022.06.011.

ZHANG L, GUO Y, SHI J H, et al. Study on power characteristics of wind-coal-battery coupling integrated power station [J]. Journal of chinese society of power engineering, 2022, 42(6): 568-574,581. DOI:  10.19805/j.cnki.jcspe.2022.06.011.
[8] 于会群, 帅永生, 靳东辉. 基于调频信号优化的储能调频控制策略 [J/OL]. 电源学报, 2022: 1-15. (2022-05-25) [2023-04-01]. http://kns.cnki.net/kcms/detail/12.1420.TM.20220524.1612.006.html.

YU H Q, SHUAI Y S, JIN D H. Control strategy of energy storage frequency regulation based on frequency regulation signal optimization [J/OL]. Journal of Chinese power supply, 2022: 1-15. (2022-05-25) [2023-04-01]. http://kns.cnki.net/kcms/detail/12.1420.TM.20220524.1612.006.html.
[9] 张祥宇, 王玉珂, 付媛. 直流微电网的多端虚拟储能协调控制技术 [J]. 电网与清洁能源, 2022, 38(5): 109-119. DOI:  10.3969/j.issn.1674-3814.2022.05.015.

ZHANG X Y, WANG Y K, FU Y. Multi-terminal virtual energy storage coordinated control technology for DC microgrids [J]. Power system and clean energy, 2022, 38(5): 109-119. DOI:  10.3969/j.issn.1674-3814.2022.05.015.
[10] 严潇, 程杉, 左先旺, 等. 基于目标优选和模型预测控制的风储优化策略 [J]. 电力科学与技术学报, 2023, 38(1): 1-10. doi:  10.19781/j.issn.1673-9140.2023.01.001

YAN X, CHENG S, ZUO X W, et al. Optimally selected objective and model predictive control based optimal strategy of wind power with energy storage [J]. Journal of electric power science and technology, 2023, 38(1): 1-10. doi:  10.19781/j.issn.1673-9140.2023.01.001
[11] 沈阳武, 宋兴荣, 罗紫韧, 等. 基于模型预测控制的分布式储能型风力发电场惯性控制策略 [J]. 上海交通大学学报, 2022, 56(10): 1285-1293. doi:  10.16183/j.cnki.jsjtu.2022.134

SHEN Y W, SONG X R, LUO Z R, et al. Inertial control strategy for wind farm with distributed energy storage system based on model predictive control [J]. Journal of Shanghai jiaotong university, 2022, 56(10): 1285-1293. doi:  10.16183/j.cnki.jsjtu.2022.134
[12] 付媛, 王毅, 张祥宇, 等. 基于多端直流联网的风电功率协调控制 [J]. 高电压技术, 2014, 40(2): 611-619. doi:  10.13336/j.1003-6520.hve.2014.02.038

FU Y, WANG Y, ZHANG X Y, et al. Coordinated control of wind power in multi-terminal DC transmission system [J]. High voltage technology, 2014, 40(2): 611-619. doi:  10.13336/j.1003-6520.hve.2014.02.038
[13] HUANG S, WU Q W, GUO Y F, et al. Hierarchical active power control of DFIG-based wind farm with distributed energy storage systems based on ADMM [J]. IEEE transactions on sustainable energy, 2020, 11(3): 1528-1538. doi:  10.1109/TSTE.2019.2929820
[14] KIRUBAKARAN A, JAIN S, NEMA R K. A review on fuel cell technologies and power electronic interface [J]. Renewable and sustainable energy reviews, 2009, 13(9): 2430-2440. doi:  10.1016/j.rser.2009.04.004
[15] 刘巨, 姚伟, 文劲宇, 等. 一种基于储能技术的风电场虚拟惯量补偿策略 [J]. 中国电机工程学报, 2015, 35(7): 1596-1605. doi:  10.13334/j.0258-8013.pcsee.2015.07.006

LIU J, YAO W, WEN J Y, et al. A wind farm virtual inertia compensation strategy based on energy storage system [J]. Proceedings of the CSEE, 2015, 35(7): 1596-1605. doi:  10.13334/j.0258-8013.pcsee.2015.07.006
[16] FANG J Y, ZHANG R Q, LI H C, et al. Frequency derivative-based inertia enhancement by grid-connected power converters with a frequency-locked-loop [J]. IEEE transactions on smart grid, 2019, 10(5): 4918-4927. doi:  10.1109/TSG.2018.2871085
[17] 周校聿, 刘娆, 鲍福增, 等. 百兆瓦级储能参与电网双重辅助服务调度的联合优化模型 [J]. 电力系统自动化, 2021, 45(19): 60-69. DOI:  10.7500/AEPS20210626004.

ZHOU X Y, LIU R, BAO F Z, et al. Joint optimization model for hundred-megawatt-level energy storage participating in dual ancillary services dispatch of power grid [J]. Automation of electric power systems, 2021, 45(19): 60-69. DOI:  10.7500/AEPS20210626004.
[18] 彭勃, 张峰, 梁军. 考虑风速分区的风-储系统短期频率响应协同控制策略 [J]. 电力系统自动化, 2018, 42(8): 57-65. doi:  10.7500/AEPS20170925001

PENG B, ZHANG F, LIANG J. Coordinated control strategy for short-term frequency response of wind-energy storage system considering wind speed partition [J]. Automation of electric power systems, 2018, 42(8): 57-65. doi:  10.7500/AEPS20170925001
[19] 虞临波, 寇鹏, 冯玉涛, 等. 风储联合发电系统参与频率响应的模型预测控制策略 [J]. 电力系统自动化, 2019, 43(12): 36-43. doi:  10.7500/AEPS20180923001

YU L B, KOU P, FENG Y T, et al. Model predictive control strategy for combined wind-storage system to participate in frequency response [J]. Automation of electric power systems, 2019, 43(12): 36-43. doi:  10.7500/AEPS20180923001
[20] ZHAO T Q, PARISIO A, MILANOVIĆ J V. Distributed control of battery energy storage systems for improved frequency regulation [J]. IEEE transactions on power systems, 2020, 35(5): 3729-3738. doi:  10.1109/TPWRS.2020.2974026