[1] XING X T, LIN J, SONG Y H, et al. Modeling and operation of the power-to-gas system for renewables integration: a review [J]. CSEE Journal of power and energy systems, 2018, 4(2): 168-178. DOI:  10.17775/CSEEJPES.2018.00260.
[2] VO T T Q, XIA A, ROGAN F, et al. Sustainability assessment of large-scale storage technologies for surplus electricity using group multi-criteria decision analysis [J]. Clean technologies and environmental policy, 2017, 19(3): 689-703. DOI:  10.1007/s10098-016-1250-8.
[3] YANG J W, ZHANG N, CHENG Y H, et al. Modeling the operation mechanism of combined P2G and gas-fired plant with CO2 recycling [J]. IEEE transactions on smart grid, 2019, 10(1): 1111-1121. DOI:  10.1109/TSG.2018.2849619.
[4] CLEGG S, MANCARELLA P. Integrated modeling and assessment of the operational impact of power-to-gas (P2G) on electrical and gas transmission networks [J]. IEEE transactions on sustainable energy, 2015, 6(4): 1234-1244. DOI:  10.1109/TSTE.2015.2424885.
[5] LEE B, LEE H, HEO J, et al. Stochastic techno-economic analysis of H2 production from power-to-gas using a high-pressure PEM water electrolyzer for a small-scale H2 fueling station [J]. Sustainable energy & fuels, 2019, 3(9): 2521-2529. DOI:  10.1039/C9SE00275H.
[6] CHENG Y, LIU M B, CHEN H L, et al. Optimization of multi-carrier energy system based on new operation mechanism modelling of power-to-gas integrated with CO2-based electrothermal energy storage [J]. Energy, 2021, 216: 119269. DOI:  10.1016/j.energy.2020.119269.
[7] LEE B, LEE H, KANG S, et al. Stochastic techno-economic analysis of power-to-gas technology for synthetic natural gas production based on renewable H2 cost and CO2 tax credit [J]. Journal of energy storage, 2019, 24: 100791. DOI:  10.1016/j.est.2019.100791.
[8] GE S Y, LIU X O, LIU H, et al. Research on unit commitment optimization of high permeability wind power generation and P2G [J]. Journal of renewable and sustainable energy, 2018, 10(3): 034702. DOI:  10.1063/1.5012777.
[9] CHEN Z X, ZHANG Y J, JI T Y, et al. Economic dispatch model for wind power integrated system considering the dispatchability of power to gas [J]. IET generation, transmission & distribution, 2019, 13(9): 1535-1544. DOI:  10.1049/iet-gtd.2018.5640.
[10] CUI D, GE W C, ZHAO W G, et al. Economic low-carbon clean dispatching of power system containing P2G considering the comprehensive influence of multi-price factor [J]. Journal of electrical engineering & technology, 2022, 17(1): 155-166. DOI:  10.1007/s42835-021-00877-4.
[11] PAN G S, GU W, LU Y P, et al. Bi-level low-carbon optimal dispatch model for P2G plant within power and natural gas markets [C]//IEEE PES. Proceedings of 2020 IEEE Power & Energy Society General Meeting, Montreal, August 2-6, 2020. Montreal: IEEE, 2020: 1-5. DOI: 10.1109/PESGM41954.2020.9282097.
[12] LI Y, LIU W J, SHAHIDEHPOUR M, et al. Optimal operation strategy for integrated natural gas generating unit and power-to-gas conversion facilities [J]. IEEE Transactions on sustainable energy, 2018, 9(4): 1870-1879. DOI:  10.1109/TSTE.2018.2818133.
[13] YANG Y J, TANG L, WANG Y W, et al. Integrated operation optimization for CCHP micro-grid connected with power-to-gas facility considering risk management and cost allocation [J]. International journal of electrical power & energy systems, 2020, 123: 106319. DOI:  10.1016/j.ijepes.2020.106319.
[14] LI Y B, ZHANG F, LI Y, et al. An improved two-stage robust optimization model for CCHP-P2G microgrid system considering multi-energy operation under wind power outputs uncertainties [J]. Energy, 2021, 223: 120048. DOI:  10.1016/j.energy.2021.120048.
[15] LIU J, SUN W, YAN J H. Effect of P2G on flexibility in integrated power-natural gas-heating energy systems with gas storage [J]. Energies, 2021, 14(1): 196. DOI:  10.3390/en14010196.
[16] NAZARI-HERIS M, MIRZAEI M A, MOHAMMADI-IVATLOO B, et al. Economic-environmental effect of power to gas technology in coupled electricity and gas systems with price-responsive shiftable loads [J]. Journal of cleaner production, 2020, 244: 118769. DOI:  10.1016/j.jclepro.2019.118769.
[17] SUN W, HARRISON G P, DODDS P E. A multi-model method to assess the value of power-to-gas using excess renewable [J]. International journal of hydrogen energy, 2022, 47(15): 9103-9114. 10.1016/j. ijhydene. 2021.12. 248.
[18] ZHANG X J, BAUER C, MUTEL C L, et al. Life cycle assessment of power-to-gas: approaches, system variations and their environmental implications [J]. Applied energy, 2017, 190: 326-338. DOI:  10.1016/j.apenergy.2016.12.098.
[19] AHERN E P, DEANE P, PERSSON T, et al. A perspective on the potential role of renewable gas in a smart energy island system [J]. Renewable energy, 2015, 78: 648-656. DOI:  10.1016/j.renene.2015.01.048.
[20] MA Y M, WANG H X, HONG F, et al. Modeling and optimization of combined heat and power with power-to-gas and carbon capture system in integrated energy system [J]. Energy, 2021, 236: 121392. DOI:  10.1016/j.energy.2021.121392.
[21] ZHANG Z N, DU J, LI M H, et al. Bi-level optimization dispatch of integrated-energy systems with P2G and carbon capture [J]. Frontiers in energy research, 2022, 9: 784703. DOI:  10.3389/fenrg.2021.784703.
[22] PARRA D, ZHANG X J, BAUER C, et al. An integrated techno-economic and life cycle environmental assessment of power-to-gas systems [J]. Applied energy, 2017, 193: 440-454. DOI:  10.1016/j.apenergy.2017.02.063.
[23] 熊宇峰, 司杨, 郑天文, 等. 考虑热电综合利用的光伏储氢独立供能系统容量优化配置 [J]. 中国电力, 2020, 53(10): 66-73. DOI:  10.11930/j.issn.1004-9649.202006027.

XIONG Y F, SI Y, ZHENG T W, et al. Optimal capacity configuration of solar-hydrogen independent power-supply system considering electricity-heat comprehensive utilization [J]. Electric power, 2020, 53(10): 66-73. DOI:  10.11930/j.issn.1004-9649.202006027.
[24] 张又中, 张兴平, 檀勤良. 考虑碳捕集和电转气技术耦合的多能互补系统协同规划 [J]. 可再生能源, 2021, 39(8): 1107-1116. DOI:  10.3969/j.issn.1671-5292.2021.08.018.

ZHANG Y Z, ZHANG X P, TAN Q L. Collaborative planning method for multi-energy system considering the coupling of power-to-gas and carbon capture technology [J]. Renewable energy resources, 2021, 39(8): 1107-1116. DOI:  10.3969/j.issn.1671-5292.2021.08.018.
[25] 赵有林, 邱晓燕, 赵长枢, 等. 考虑电转气精细化模型的气电联合微网日前优化调度 [J]. 电气传动, 2021, 51(11): 68-74. DOI:  10.19457/j.1001-2095.dqcd21247.

ZHAO Y L, QIU X Y, ZHAO C S, et al. Day ahead optimal scheduling of microgrid in gas-electricity combined system considering refined model of power to gas [J]. Electric drive, 2021, 51(11): 68-74. DOI:  10.19457/j.1001-2095.dqcd21247.
[26] 陈云, 刘东, 高飞, 等. 考虑电转气环节氢能精细化利用的区域综合能源系统日前优化调度 [J]. 供用电, 2021, 38(11): 59-67. DOI:  10.19421/j.cnki.1006-6357.2021.11.010.

CHEN Y, LIU D, GAO F, et al. Day-ahead optimal dispatching of regional integrated energy system considering refined utilization of hydrogen in power to gas process [J]. Distribution & utilization, 2021, 38(11): 59-67. DOI:  10.19421/j.cnki.1006-6357.2021.11.010.
[27] 李敏超, 杨俊友, 韩子娇, 等. 计及电热混合储能的风电消纳低碳经济调度模型研究 [J]. 东北电力技术, 2020, 41(5): 53-59,62. DOI:  10.3969/j.issn.1004-7913.2020.05.014.

LI M C, YANG J Y, HAN Z J, et al. Study on low-carbon economic dispatching model for wind power accommodation with electrothermal hybrid energy storage [J]. Northeast electric power technology, 2020, 41(5): 53-59,62. DOI:  10.3969/j.issn.1004-7913.2020.05.014.