[1] 联合国. 气候变化框架公约 [R]. 里约热内卢: 联合国, 1992.

United Nations. United Nations framework convention on climate change [R]. Rio de Janeiro: United Nations, 1992.
[2] 蔡博峰, 李琦, 张贤. 中国二氧化碳捕集利用与封存(CCUS)年度报告(2021)——中国CCUS路径研究 [R]. 北京: 生态环境部环境规划院, 中国科学院武汉岩土力学研究所, 中国21世纪议程管理中心, 2021.

CAI B F, LI Q, ZHANG X. China carbon dioxide capture, utilization and storage (CCUS) annual report (2021): China CCUS pathway study [R]. Beijing: Institute of Environmental Planning, Ministry of Ecology and Environment, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences University of Chinese. The Administrative Center for China's Agenda 21, 2021.
[3] IEA. Global energy review: CO2 emissions in 2022 [R]. Paris: IEA, 2023.
[4] 张贤, 李阳, 马乔, 等. 我国碳捕集利用与封存技术发展研究 [J]. 中国工程科学, 2021, 23(6): 70-80. DOI:  10.15302/J-SSCAE-2021.06.004.

ZHANG X, LI Y, MA Q, et al. Development of carbon capture, utilization and storage technology in China [J]. Strategic study of CAE, 2021, 23(6): 70-80. DOI:  10.15302/J-SSCAE-2021.06.004.
[5] 张贤, 李凯, 马乔, 等. 碳中和目标下CCUS技术发展定位与展望 [J]. 中国人口·资源与环境, 2021, 31(9): 29-33. DOI:  10.12062/cpre.20210827.

ZHANG X, LI K, MA Q, et al. Orientation and prospect of ccus development under carbon neutrality target [J]. China population, resources and environment, 2021, 31(9): 29-33. DOI:  10.12062/cpre.20210827.
[6] 黄晶. 中国碳捕集利用与封存技术评估报告 [M]. 北京: 科学出版社, 2021.

HUANG J. National assessment report on development of carbon capture utilization and storage technology in China [M]. Beijing: Science Press, 2021.
[7] IPCC. Climate change 2022: mitigation of climate change [R]. Geneva: IPCC, 2022.
[8] 中华人民共和国国民经济和社会发展第十四个五年规划和2035年远景目标纲要 [M]. 北京: 人民出版社, 2021.

Outline of the People's Republic of China 14th Five-Year Plan for National Economic and Social Development and Long-Range Objectives for 2035 [M]. Beijing: People's Publishing House, 2021.
[9] 孙腾民, 刘世奇, 汪涛. 中国二氧化碳地质封存潜力评价研究进展 [J]. 煤炭科学技术, 2021, 49(11): 10-20. DOI:  10.13199/j.cnki.cst.2021.11.002.

SUN T M, LIU S Q, WANG T. Research advances on evaluation of CO2 geological storage potential in China [J]. Coal science and technology, 2021, 49(11): 10-20. DOI:  10.13199/j.cnki.cst.2021.11.002.
[10] 陆诗建. 碳捕集、利用与封存技术 [M]. 北京: 中国石化出版社, 2020.

LU S J. Carbon capture, utilization and storage technology. Beijing: China Petrochemical Press, 2020.
[11] 李国玉, 吕鸣岗. 中国含油气盆地图集 [M]. 北京: 石油工业出版社, 2002.

LI G Y, LÜ M G. Atlas of China's petroliferous basins [M]. Beijing: Petroleum industry press, 2002.
[12] 秦长文, 肖钢, 王建丰, 等. CO2地质封存技术及中国南方近海CO2封存的前景 [J]. 海洋地质前沿, 2012, 28(9): 40-45. DOI:  10.16028/j.1009-2722.2012.09.001.

QIN C W, XIAO G, WANG J F, et al. A review of CO2 storage technology and perspective of CO2 storage in the nearshore area of South China [J]. Marine geology frontiers, 2012, 28(9): 40-45. DOI:  10.16028/j.1009-2722.2012.09.001.
[13] ZHOU D, LI P C, LIANG X, et al. A long-term strategic plan of offshore CO2 transport and storage in northern South China Sea for a low-carbon development in Guangdong province, China [J]. International journal of greenhouse gas control, 2018, 70: 76-87. DOI:  10.1016/j.ijggc.2018.01.011.
[14] 骆仲泱, 方梦祥, 李明远, 等. 二氧化碳捕集封存和利用技术 [M]. 北京: 中国电力出版社, 2012.

LUO Z Y, FANG M X, LI M Y, et al. Carbon dioxide capture, storage and utilization technology [M]. Beijing: China Electric Power Press, 2012.
[15] 科学技术部社会发展科技司, 中国21世纪议程管理中心. 中国碳捕集利用与封存技术发展路线图(2019版) [M]. 北京: 科学出版社, 2019.

Department of Social Development, Ministry of Science and technology, The Administrative Center for China's Agenda 21. Roadmap for carbon capture, utilization and storage technology development in China (2019 edition) [M]. Beijing: Science Press, 2019.
[16] 胡其会, 李玉星, 张建, 等. “双碳”战略下中国CCUS技术现状及发展建议 [J]. 油气储运, 2022, 41(4): 361-371. DOI:  10.6047/j.issn.1000-8241.2022.04.001.

HU Q H, LI Y X, ZHANG J, et al. Current status and development suggestions of CCUS technology in China under the "Double Carbon" strategy [J]. Oil & gas storage and transportation, 2022, 41(4): 361-371. DOI:  10.6047/j.issn.1000-8241.2022.04.001.
[17] 李阳. 碳中和与碳捕集利用封存技术进展 [M]. 北京: 中国石化出版社, 2021.

LI Y. Progress of carbon neutrality and carbon capture, utilization and storage technology [M]. Beijing: China Petrochemical Press, 2021.
[18] 任永强, 车得福, 许世森, 等. 国内外IGCC技术典型分析 [J]. 中国电力, 2019, 52(2): 7-13,184. DOI:  10.11930/j.issn.1004-9649.201806062.

REN Y Q, CHE D F, XU S S, et al. Study on typical domestic and foreign lGCC technology applications [J]. Electric power, 2019, 52(2): 7-13,184. DOI:  10.11930/j.issn.1004-9649.201806062.
[19] 樊强, 许世森, 刘沅, 等. 基于IGCC的燃烧前CO2捕集技术应用与示范 [J]. 中国电力, 2017, 50(5): 163-167,184. DOI:  10.11930/j.issn.1004-9649.2017.05.163.05.

FAN Q, XU S S, LIU Y, et al. Application and demonstration of lGCC-based pre-combustion CO2 capture technology [J]. Electric power, 2017, 50(5): 163-167,184. DOI:  10.11930/j.issn.1004-9649.2017.05.163.05.
[20] 叶云云, 廖海燕, 王鹏, 等. 我国燃煤发电CCS/CCUS技术发展方向及发展路线图研究 [J]. 中国工程科学, 2018(20): 80-89. DOI:  10.15302/J-SSCAE-2018.03.012.

YE Y Y, LIAO H Y, WANG P, et al. Research on technology directions and roadmap of CCS/CCUS for coal-fired power generation in China [J]. Strategic study of CAE, 2018(20): 80-89. DOI:  10.15302/J-SSCAE-2018.03.012.
[21] 刘飞, 关键, 祁志福, 等. 燃煤电厂碳捕集、利用与封存技术路线选择 [J]. 华中科技大学学报(自然科学版), 2022, 50(7): 1-13. DOI:  10.13245/j.hust.220701.

LIU F, GUAN J, QI Z F, et al. Technology route selection for carbon capture utilization and storage in coal-fired power plants [J]. Journal of Huazhong University of Science and Technology (natural science edition), 2022, 50(7): 1-13. DOI:  10.13245/j.hust.220701.
[22] 郭军军, 张泰, 李鹏飞, 等. 中国煤粉富氧燃烧的工业示范进展及展望 [J]. 中国电机工程学报, 2021, 41(4): 1197-1208. DOI:  10.13334/j.0258-8013.pcsee.201639.

GUO J J, ZHANG T, LI P F, et al. Industrial demonstration progress and trend in pulverized coal oxy-fuel combustion in China [J]. Proceedings of the CSEE, 2021, 41(4): 1197-1208. DOI:  10.13334/j.0258-8013.pcsee.201639.
[23] 史晓斐, 杨思宇, 钱宇. 化学链技术在煤炭清洁高效利用中的研究进展 [J]. 化工学报, 2018, 69(12): 4931-4946. DOI:  10.11949/j.issn.0438-1157.20180436.

SHI X F, YANG S Y, QIAN Y. Chemical looping technology for clean and highly efficient coal processes [J]. CIESC journal, 2018, 69(12): 4931-4946. DOI:  10.11949/j.issn.0438-1157.20180436.
[24] 王金星, 孙宇航. 化学链燃烧技术的研究进展综述 [J]. 华北电力大学学报(自然科学版), 2019, 46(5): 100-110. DOI:  10.3969/j.ISSN.1007-2691.2019.05.13.

WANG J X, SUN Y H. Review of chemical-looping combustion technology research [J]. Journal of North China Electric Power University (natural science edition), 2019, 46(5): 100-110. DOI:  10.3969/j.ISSN.1007-2691.2019.05.13.
[25] 白歆慰, 刘金昌, 白磊. 煤化学链燃烧载氧体研究进展 [J]. 洁净煤技术, 2021, 27(2): 31-44. DOI:  10.13226/j.issn.1006-6772.CCUS20092701.

BAl X W, LIU J C, BAI L. Recent advances in oxygen carriers for chemical looping combustion of coal [J]. Clean coal technology, 2021, 27(2): 31-44. DOI:  10.13226/j.issn.1006-6772.CCUS20092701.
[26] 陈旭, 杜涛, 李刚, 等. 吸附工艺在碳捕集中的应用现状 [J]. 中国电机工程学报, 2019, 39(增刊1): 155-163. DOI:  10.13334/j.0258-8013.pcsee.190376.

CHEN X, DU T, LI G, et al. Application of adsorption technology on carbon capture [J]. Proceedings of the CSEE, 2019, 39(Suppl. 1): 155-163. DOI:  10.13334/j.0258-8013.pcsee.190376.
[27] SREEDHAR I, VAIDHISWARAN R, KAMANI B M, et al. Process and engineering trends in membrane based carbon capture [J]. Renewable and sustainable energy reviews, 2017, 68: 659-684. DOI:  10.1016/j.rser.2016.10.025.
[28] RIBOLDI L, BOLLAND O. Overview on pressure swing adsorption (PSA) as CO2 capture technology: state-of-the-art, limits and potentials [J]. Energy procedia, 2017, 114: 2390-2400. DOI:  10.1016/j.egypro.2017.03.1385.
[29] OCHEDI F O, YU J L, YU H, et al. Carbon dioxide capture using liquid absorption methods: a review [J]. Environmental chemistry letters, 2021, 19(1): 77-109. DOI:  10.1007/s10311-020-01093-8.
[30] 林海周, 吴大卫, 范永春, 等. 燃煤电厂烟气CO2化学吸收捕集液-液两相吸收剂开发进展 [J]. 洁净煤技术, 2023, 29(4): 21-30. DOI:  10.13226/j.issn.1006-6772.RM23040101.

LIN H Z, WU D W, FAN Y C, et al. Development progress of liquid-liquid biphasic solvents for carbondioxide chemical absorption capture from flue gas of coal-fired power plants [J]. Clean coal technology, 2023, 29(4): 21-30. DOI:  10.13226/j.issn.1006-6772.RM23040101.
[31] LE M Y, NEVEUX T, AL A A, et al. Process modifications for solvent-based post-combustion CO2 capture [J]. International journal of greenhouse gas control, 2014, 31: 96-112. DOI:  10.1016/j.ijggc.2014.09.024.
[32] 林海周, 杨晖, 罗海中, 等. 烟气二氧化碳捕集胺类吸收剂研究进展 [J]. 南方能源建设, 2019, 6(1): 8-14. DOI:  10.16516/j.gedi.issn2095-8676.2019.01.003.

LIN H Z, YANG H, LUO H Z, et al. Research progress on amine absorbent for CO2 capture from flue gas [J]. Southern energy construction, 2019, 6(1): 8-14. DOI:  10.16516/j.gedi.issn2095-8676.2019.01.003.
[33] 林海周, 裴爱国, 方梦祥. 燃煤电厂烟气二氧化碳胺法捕集工艺改进研究进展 [J]. 化工进展, 2018, 37(12): 4874-4886. DOI:  10.16085/j.issn.1000-6613.2017-2525.

LIN H Z, PEI A G, FANG M X. Progress of research on process modifications for amine solvent-based post combustion CO2 capture from coal-fired power plant [J]. Chemical industry and engineering progress, 2018, 37(12): 4874-4886. DOI:  10.16085/j.issn.1000-6613.2017-2525.
[34] 邝展婷. 全球船企抢占CCUS风口 [N]. 中国船舶报, 2022-02-18 (005).

KUANG Z T. Global shipping companies seize the CCUS outlet [N]. China Ship News, 2022-02-18 (005).
[35] 吕龙德. 二氧化碳运输船或迎广阔市场 [J]. 广东造船, 2021, 40(5): 13-15. DOI:  10.3969/j.issn.2095-6622.2021.05.003.

LÜ L D. Carbon dioxide carriers may welcome a broad market [J]. Guangdong shipbuilding, 2021, 40(5): 13-15. DOI:  10.3969/j.issn.2095-6622.2021.05.003.
[36] 陈霖. 中石化二氧化碳管道输送技术及实践 [J]. 石油工程建设, 2016, 42(4): 7-10. DOI:  10.3969/j.issn.1001-2206.2016.04.002.

CHEN L. Transmission technology of CO2 pipeline and practice in sinopec [J]. Petroleum engineering construction, 2016, 42(4): 7-10. DOI:  10.3969/j.issn.1001-2206.2016.04.002.
[37] 高帅帅, 刘辉. 二氧化碳管道输送关键技术研究及应用 [J]. 石化技术, 2017, 24(9): 57,30. DOI: 10.3969/j.issn.1006-0235.2017. 09.045.

GAO S S, LIU H. Research and application of key technologies for carbon dioxide pipeline transportation [J]. Petrochemical industry technology, 2017, 24(9): 57,30. DOI: 10.3969/j.issn.1006-0235.2017. 09.045.
[38] 郑建坡, 史建公, 刘志坚, 等. 二氧化碳管道输送技术研究进展 [J]. 中外能源, 2018, 23(6): 87-94

ZHENG J P, SHI J G, LIU Z J, et al. Recent advances in pipeline transportation technology of carbon dioxide [J]. Sino-global energy, 2018, 23(6): 87-94
[39] 潘卫国, 李楚凡, 郭瑞堂. 光电催化CO2还原技术研究进展 [J]. 华中科技大学学报(自然科学版), 2023, 51(1): 146-155. DOI:  10.13245/j.hust.239153.

PAN W G, LI C F, GUO R T. Research progress in photocatalytic CO2 reduction technology [J]. Journal of Huazhong University of Science and Technology (natural science edition), 2023, 51(1): 146-155. DOI:  10.13245/j.hust.239153.
[40] 陈为, 魏伟, 孙予罕. 二氧化碳光电催化转化利用研究进展 [J]. 中国科学:化学, 2017, 47(11): 1251-1261. DOI:  10.1360/N032017-00092.

CHEN W, WEI W, SUN Y H. Recent progress on photoelectrocatalytic conversion of carbon dioxide [J]. Scientia sinica (chimica), 2017, 47(11): 1251-1261. DOI:  10.1360/N032017-00092.
[41] 李龙泰, 高彪, 罗学彬, 等. 二氧化碳催化加氢研究进展 [J]. 工业催化, 2021, 29(7): 1-10. DOI:  10.3969/j.issn.1008-1143.2021.07.001.

LI L T, GAO B, LUO X B, et al. Research progress on hydrogenation of carbon dioxide [J]. Industrial catalysis, 2021, 29(7): 1-10. DOI:  10.3969/j.issn.1008-1143.2021.07.001.
[42] 张亚朋, 崔龙鹏, 刘艳芳, 等. 3种典型工业固废的CO2矿化封存性能 [J]. 环境工程学报, 2021, 15(7): 2344-2355. DOI:  10.12030/j.cjee.202101003.

ZHANG Y P, CUI L P, LIU Y F, et al. Comparison of three typical industrial solid wastes on the performance of CO2 mineralization and sequestration [J]. Chinese journal of environmental engineering, 2021, 15(7): 2344-2355. DOI:  10.12030/j.cjee.202101003.
[43] 莫淳, 廖文杰, 梁斌, 等. 工业固废活化钾长石CO2矿化提钾的生命周期碳排放与成本评价 [J]. 化工学报, 2017, 68(6): 2501-2509. DOI:  10.11949/j.issn.0438-1157.20161754.

MO C, LIAO W J, LIANG B, et al. Life-cycle greenhouse gas emissions and cost of potassium extraction and CO2 mineralization via K-feldspar—industrial solid waste calcination [J]. CIESC journal, 2017, 68(6): 2501-2509. DOI:  10.11949/j.issn.0438-1157.20161754.
[44] 孙一夫, 李凤军, 何文, 等. 二氧化碳矿化养护加气混凝土试验研究 [J]. 洁净煤技术, 2021, 27(2): 237-245. DOI:  10.13226/j.issn.1006-6772.CCUS20071401.

SUN Y F, LI F J, HE W, et al. lnvestigation on CO2 mineralization curing of aerated concretes [J]. Clean coal technology, 2021, 27(2): 237-245. DOI:  10.13226/j.issn.1006-6772.CCUS20071401.
[45] 王秋华, 吴嘉帅, 张卫风. 二碱性工业固废矿化封存二氧化碳研究进展 [J]. 化工进展, 2023, 42(3): 1572-1582. DOI:  10.16085/j.issn.1000-6613.2022-0813.

WANG Q H, WU J S, ZHANG W F. Research progress of alkaline industrial solid wastes mineralization for carbon dioxide sequestration [J]. Chemical industry and engineering progress, 2023, 42(3): 1572-1582. DOI:  10.16085/j.issn.1000-6613.2022-0813.
[46] 吴林, 李季, 朱家骅, 等. 磷石膏-氨-水固碳反应体系氨浓度对石膏颗粒溶解速率的影响 [J]. 化工学报, 2020, 71(8): 3575-3584. DOI:  10.11949/0438-1157.20200200.

WU L, LI J, ZHU J H, et al. Effect of ammonia concentration on dissolution rate of gypsum particles inphosphogypsum-ammonia-water reaction system for carbon sequestration [J]. CIESC journal, 2020, 71(8): 3575-3584. DOI:  10.11949/0438-1157.20200200.
[47] 廖莎, 薛冬, 李晓姝, 等. 微藻固碳技术基础及其生物质应用研究进展 [J]. 当代化工, 2020, 49(6): 1175-1179,1183. DOI:  10.3969/j.issn.1671-0460.2020.06.041.

LIAO S, XUE D, LI X Z, et al. Research progress in carbon dioxide fixation by microalgae and lts biomass application [J]. Contemporary chemical industry, 2020, 49(6): 1175-1179,1183. DOI:  10.3969/j.issn.1671-0460.2020.06.041.
[48] 夏奡, 叶文帆, 富经纬, 等. 燃煤烟气微藻固碳减排技术现状与展望 [J]. 煤炭科学技术, 2020, 48(1): 108-119. DOI:  10.13199/j.cnki.cst.2020.01.014.

XIA A, YE W F, FU J W, et al. Current status and prospect of carbon fixation and emission reduction technology for coal-fired flue gas by microalgae [J]. Coal science and technology, 2020, 48(1): 108-119. DOI:  10.13199/j.cnki.cst.2020.01.014.
[49] 王伟伟, 马俊贵. CO2气肥增施技术及其应用 [J]. 农业工程, 2014, 4(增刊1): 48-51. DOI:  10.3969/j.issn.2095-1795.2014.z1.013.

WANG W W, MA J X. Gas fertilizer increasing technology and lts application of carbon dioxide [J]. Agricultural engineering, 2014, 4(Suppl. 1): 48-51. DOI:  10.3969/j.issn.2095-1795.2014.z1.013.
[50] 姚闯, 张林雁, 任守华. 棚室CO2气肥机作用机理与应用研究 [J]. 科技创新与应用, 2021(10): 182-184.

YAO C, ZHANG L Y, REN S H. Study on mechanism and application of CO2 gas fertilizer in shed [J]. Technology innovation and application, 2021(10): 182-184.
[51] 胡永乐, 郝明强, 陈国利, 等. 中国CO2驱油与埋存技术及实践 [J]. 石油勘探与开发, 2019, 46(4): 716-727. DOI:  10.11698/PED.2019.04.10.

HU Y L, HAO M Q, CHEN G L, et al. Technologies and practice of CO2 flooding and sequestration in China [J]. Petroleum exploration and development, 2019, 46(4): 716-727. DOI:  10.11698/PED.2019.04.10.
[52] 李阳. 低渗透油藏CO2驱提高采收率技术进展及展望 [J]. 油气地质与采收率, 2020, 27(1): 1-10. DOI:  10.13673/j.cnki.cn37-1359/te.2020.01.001.

LI Y. Technical advancement and prospect for CO2 flooding enhanced oil recovery in low permeability reservoirs [J]. Petroleum geology and recovery efficiency, 2020, 27(1): 1-10. DOI:  10.13673/j.cnki.cn37-1359/te.2020.01.001.
[53] 胥蕊娜, 姜培学. CO2地质封存与利用技术研究进展 [J]. 中国基础科学, 2018, 20(4): 44-48. DOI:  10.3969/j.issn.1009-2412.2018.04.008.

XU R N, JIANG P X. Research progress of CO2 geological storage and utilization technology [J]. China basic science, 2018, 20(4): 44-48. DOI:  10.3969/j.issn.1009-2412.2018.04.008.
[54] 臧雅琼, 高振记, 钟伟. CO2地质封存国内外研究概况与应用 [J]. 环境工程技术学报, 2012, 2(6): 503-507. DOI:  10.3969/j.issn.1674-991X.2012.06.079.

ZANG Y Q, GAO Z J, ZHONG W. Overview of research and application of CO2 geological sequestration at home and abroad [J]. Journal of environmental engineering technology, 2012, 2(6): 503-507. DOI:  10.3969/j.issn.1674-991X.2012.06.079.
[55] 王永胜. 中国神华煤制油深部咸水层二氧化碳捕集与地质封存项目环境风险后评估研究 [J]. 环境工程, 2018, 36(2): 21-26. DOI:  10.13205/j.hjgc.201802005.

WANG Y S. Research of the environmental risk assessment of CO2 captureand aquifer geologic storage project in China Shenhua coal to oil [J]. Environmental engineering, 2018, 36(2): 21-26. DOI:  10.13205/j.hjgc.201802005.
[56] 李姜辉, 李鹏春, 李彦尊, 等. 离岸碳捕集利用与封存技术体系研究 [J]. 中国工程科学, 2023, 25(2): 173-186. DOI:  10.15302/J-SSCAE-2023.07.015.

LI J H, LI P C, LI Y Z, et al. Technology system of offshore carbon capture,utilization, and storage [J]. Strategic study of CAE, 2023, 25(2): 173-186. DOI:  10.15302/J-SSCAE-2023.07.015.
[57] 霍传林. 我国近海二氧化碳海底封存潜力评估和封存区域研究 [D]. 大连: 大连海事大学, 2014. DOI:  10.7666/d.Y2553612.

HUO C L. Study on the potential evaluation and the storage areas ofthe carbon dioxide seabed storage in offshore China [D]. Dalian: Dalian Maritime University, 2014. DOI:  10.7666/d.Y2553612.
[58] 米立军. 全球海上CO2封存现状及中国近海机遇与挑战 [J]. 中国海上油气, 2023, 35(1): 123-135. DOI:  10.11935/j.issn.1673-1506.2023.01.013.

MI L J. Current status of global CO2 ocean sequestration and opportunities and challenges in China offshore areas [J]. China offshore oil and gas, 2023, 35(1): 123-135. DOI:  10.11935/j.issn.1673-1506.2023.01.013.
[59] 张少鹏, 刘晓磊, 程光伟, 等. 海底碳封存环境地质灾害风险及监测技术研究 [J]. 中国工程科学, 2023, 25(3): 122-130. DOI:  10.15302/J-SSCAE-2023.03.011.

ZHANG S P, LIU X L, CHENG G W, et al. Geoenvironmental hazard risks and monitoring technologies for marine carbon sequestration [J]. Strategic study of CAE, 2023, 25(3): 122-130. DOI:  10.15302/J-SSCAE-2023.03.011.
[60] 可行, 陈建文, 龚建明, 等. 珠江口盆地二氧化碳地质封存条件及源汇匹配性分析 [J]. 海洋地质与第四纪地质, 2023, 43(2): 55-65. DOI:  10.16562/j.cnki.0256-1492.2022112301.

KE X, CHEN J W, GONG J M, et al. Assessment on geological condition for carbon dioxide sequestration and source-sink matching in the Pearl River Mouth Basin [J]. Marine geology & quaternary geology, 2023, 43(2): 55-65. DOI:  10.16562/j.cnki.0256-1492.2022112301.
[61] 自然资源部. 2022年中国自然资源统计公报 [R]. 北京: 自然资源部, 2023.

Ministry of Natural Resources of the People's Republic of China. China natural resources statistical bulletin 2022 [R]. Beijing: Ministry of Natural Resources of the People's Republic of China, 2023.
[62] 李林涛, 于航, 李彦尊, 等. 珠江口盆地CO2地质封存适宜性GCA评价 [J]. 中国海上油气, 2023, 35(1): 170-178. DOI:  10.11935/j.issn.1673-1506.2023.01.018.

LI L T, YU H, LI Y Z, et al. GCA evaluation of the suitability of CO2 geological storage in the Pearl River Mouth basin [J]. China offshore oil and gas, 2023, 35(1): 170-178. DOI:  10.11935/j.issn.1673-1506.2023.01.018.
[63] 广东南方碳捕集与封存产业中心. 广东省二氧化碳捕集利用运输与封存规划研究报告 [R]. 广州: 广东南方碳捕集与封存产业中心, 2022.

Guangdong CCUS Centre. Research report on carbon dioxide capture, utilization, transportation and storage planning in Guangdong Province [R]. Guangzhou: Guangdong CCUS Centre, 2022.
[64] 周蒂, 李鹏春, 张翠梅. 离岸二氧化碳驱油的国际进展及我国近海潜力初步分析 [J]. 南方能源建设, 2015, 2(3): 1-9. DOI:  10.16516/j.gedi.issn2095-8676.2015.03.001.

ZHOU D, LI P C, ZHANG C M. Offshore CO2-EOR: worldwide progress and a preliminary analysis on its potential in the sedimentary basins off China [J]. Southern energy construction, 2015, 2(3): 1-9. DOI:  10.16516/j.gedi.issn2095-8676.2015.03.001.
[65] ZHOU D, ZHAO Z X, LIAO J, et al. A preliminary assessment on CO2 storage capacity in the Pearl River Mouth Basin offshore Guangdong, China [J]. International journal of greenhouse gas control, 2011, 5(2): 308-317. DOI:  10.1016/j.ijggc.2010.09.011.
[66] 郭建强. 全国二氧化碳地质储存潜力评价与示范工程总成果报告 [R]. 保定: 中国地质调查局水文地质环境地质调查中心, 2013.

GUO J Q. National carbon dioxide geological storage potential evaluation and demonstration project overall results report [R]. Baoding: Center for Hydrogeology and Environmental Geology China Geological Survey, 2013.
[67] 李凡异, 张厚和, 李春荣, 等. 北部湾盆地海域油气勘探历程与启示 [J]. 新疆石油地质, 2021, 42(3): 337-345. DOI:  10.7657/XJPG20210310.

LI F Y, ZHANG H H, LI C R. Offshore petroleum exploration history and enlightenment in Beibu Gulf Basin [J]. Xinjiang petroleum geology, 2021, 42(3): 337-345. DOI:  10.7657/XJPG20210310.
[68] LI P C, ZHOU D, ZHANG C M, et al. Assessment of the effective CO2 storage capacity in the Beibuwan Basin, offshore of southwestern P. R. China [J]. International journal of greenhouse gas control, 2015, 37: 325-339. DOI:  10.1016/j.ijggc.2015.03.033.
[69] ZHOU D, ZHAO D Q, LIU Q, et al. The GDCCSR project promoting regional CCS-readiness in the Guangdong Province, South China [J]. Energy procedia, 2013, 37: 7622-7632. DOI:  10.1016/j.egypro.2013.06.708.
[70] LI P C, ZHOU D, ZHANG C M, et al. Potential of sub-seafloor CO2 geological storage in Northern South China Sea and its importance for CCS development in South China [J]. Energy procedia, 2013, 37: 5191-5200. DOI:  10.1016/j.egypro.2013.06.435.
[71] 魏宁, 王倩, 李小春, 等. CO2海洋管道运输的技术经济分析 [J]. 油气储运, 2015, 34(11): 1141-1146. DOI:  10.6047/j.issn.1000-8241.2015.11.001.

WEI N, WANG Q, LI X C, et al. Technical and economic assessments on CO2 transmission through subsea pipelines [J]. Oil & gas storage and transportation, 2015, 34(11): 1141-1146. DOI:  10.6047/j.issn.1000-8241.2015.11.001.
[72] 孙玉景, 周立发, 李越. CO2海洋封存的发展现状 [J]. 地质科技情报, 2018, 37(4): 212-218. DOI:  10.19509/j.cnki.dzkq.2018.0428.

SUN Y J, ZHOU L F, LI Y. Development status of CO2 marine sequestration [J]. Bulletin of geological science and technology, 2018, 37(4): 212-218. DOI:  10.19509/j.cnki.dzkq.2018.0428.
[73] NING Y R, TURA A. Economic and operational investigation of CO2 sequestration through enhanced oil recovery in unconventional reservoirs in Colorado, USA [J]. Geoenergy science and engineering, 2023, 226: 211820. DOI:  10.1016/j.geoen.2023.211820.