[1] 蔡彦枫, 徐初琪, 汤东升, 等. 基于多尾流模型的大型海上风电场扩容试验研究 [J]. 南方能源建设, 2023, 10(4): 138-147. DOI:  10.16516/j.gedi.issn2095-8676.2023.04.014.

CAI Y F, XU C Q, TANG D S, et al. Experimental research on capacity expansion of large-scale offshore wind farm under multiple wake models [J]. Southern energy construction, 2023, 10(4): 138-147. DOI:  10.16516/j.gedi.issn2095-8676.2023.04.014.
[2] 李铮, 郭小江, 申旭辉, 等. 我国海上风电发展关键技术综述 [J]. 发电技术, 2022, 43(2): 186-197. DOI:  10.12096/j.2096-4528.pgt.22028.

LI Z, GUO X J, SHEN X H, et al. Summary of technologies for the development of offshore wind power industry in China [J]. Power generation technology, 2022, 43(2): 186-197. DOI:  10.12096/j.2096-4528.pgt.22028.
[3] 宋翌蕾, 田琳琳, 赵宁. 风力机三维尾流模型的提出与校核 [J]. 太阳能学报, 2021, 42(2): 129-135. DOI:  10.19912/j.0254-0096.tynxb.2018-0912.

SONG Y L, TIAN L L, ZHAO N. Proposal and validation of a new 3D wake model for wind turbine [J]. Acta energiae solaris sinica, 2021, 42(2): 129-135. DOI:  10.19912/j.0254-0096.tynxb.2018-0912.
[4] JENSEN N O. A note on wind generator interaction [R]. Denmark: Risø National Laboratory, 1983.
[5] WITHA B, STEINFELD G, HEINEMANN D, et al. Advanced turbine parameterizations in offshore LES wake simulations [C]//Anon. 6. International Symposium on Computational Wind Engineering. Hamburg, Germany, Junelo, 2014. [s. l.]: Witha B, 2014.
[6] GOIT J P, MEYERS J. Optimal control of energy extraction in wind-farm boundary layers [J]. Journal of fluid mechanics, 2015, 768: 5-50. DOI:  10.1017/jfm.2015.70.
[7] XIE S B, ARCHER C. Self-similarity and turbulence characteristics of wind turbine wakes via large-eddy simulation [J]. Wind energy, 2015, 18(10): 1815-1838. DOI:  10.1002/we.1792.
[8] 吴迪, 刘怀西, 苗得胜. 尾流算法与风向变化对海上风机排布影响研究 [J]. 南方能源建设, 2019, 6(2): 54-58. DOI:  10.16516/j.gedi.issn2095-8676.2019.02.010.

WU D, LIU H X, MIAO D S. Research on offshore wind farm units layout considering the algorithm of wake model and the change of wind direction [J]. Southern energy construction, 2019, 6(2): 54-58. DOI:  10.16516/j.gedi.issn2095-8676.2019.02.010.
[9] KATIC I, HØJSTRUP J, JENSEN N O. A simple model for cluster efficiency [C]//Anon. European Wind Energy Association Conference and Exhibition, Rome, Italy, October 6-8, 1986. Rome: A. Raguzzi, 1987.
[10] FRANDSEN S, BARTHELMIE R, PRYOR S, et al. Analytical modelling of wind speed deficit in large offshore wind farms [J]. Wind energy, 2006, 9(1/2): 39-53. DOI:  10.1002/we.189.
[11] PORTÉ-AGEL F, WU Y T, CHEN C H. A numerical study of the effects of wind direction on turbine wakes and power losses in a large wind farm [J]. Energies, 2013, 6(10): 5297-5313. DOI:  10.3390/en6105297.
[12] CHAMORRO L P, PORTÉ-AGEL F. Effects of thermal stability and incoming boundary-layer flow characteristics on wind-turbine wakes: a wind-tunnel study [J]. Boundary-layer meteorology, 2010, 136(3): 515-533. DOI:  10.1007/s10546-010-9512-1.
[13] XIE S B, ARCHER C L. A numerical study of wind-turbine wakes for three atmospheric stability conditions [J]. Boundary-layer meteorology, 2017, 165(1): 87-112. DOI:  10.1007/s10546-017-0259-9.
[14] LI Q, MURATA J, ENDO M, et al. Experimental and numerical investigation of the effect of turbulent inflow on a horizontal axis wind turbine (part II: wake characteristics) [J]. Energy, 2016, 113: 1304-1315. DOI:  10.1016/j.energy.2016.08.018.
[15] 杨祥生. 风力机尾流效应数值模拟研究 [D]. 南京: 南京航空航天大学, 2016.

YANG X S. Study on the numerical simulation of wind turbine wakes effect [D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2016.
[16] AINSLIE J F. Calculating the flowfield in the wake of wind turbines [J]. Journal of wind engineering and industrial aerodynamics, 1988, 27(1-3): 213-224. DOI:  10.1016/0167-6105(88)90037-2.
[17] MAGNUSSON M. Near-wake behaviour of wind turbines [J]. Journal of wind engineering and industrial aerodynamics, 1999, 80(1/2): 147-167. DOI:  10.1016/S0167-6105(98)00125-1.
[18] CRESPO A, HERNÁNDEZ J. Turbulence characteristics in wind-turbine wakes [J]. Journal of wind engineering and industrial aerodynamics, 1996, 61(1): 71-85. DOI:  10.1016/0167-6105(95)00033-X.
[19] FRANDSEN S. Measurements on and modelling of offshore wind farms [R]. Denmark: Forskningscenter Risoe, 1996.
[20] TIAN L L, ZHU W J, SHEN W Z, et al. Development and validation of a new two-dimensional wake model for wind turbine wakes [J]. Journal of wind engineering and industrial aerodynamics, 2015, 137: 90-99. DOI:  10.1016/j.jweia.2014.12.001.
[21] GAO X X, YANG H X, LU L. Optimization of wind turbine layout position in a wind farm using a newly-developed two-dimensional wake model [J]. Applied energy, 2016, 174: 192-200. DOI:  10.1016/j.apenergy.2016.04.098.
[22] ISHIHARA T, QIAN G W. A new Gaussian-based analytical wake model for wind turbines considering ambient turbulence intensities and thrust coefficient effects [J]. Journal of wind engineering and industrial aerodynamics, 2018, 177: 275-292. DOI:  10.1016/j.jweia.2018.04.010.
[23] 吴阳阳. 基于测风数据的经验尾流模型适用性分析研究 [J]. 浙江电力, 2017, 36(11): 92-98. DOI:  10.19585/j.zjdl.201711017.

WU Y Y. Applicability analysis of empirical wake model based on wind data [J]. Zhejiang electric power, 2017, 36(11): 92-98. DOI:  10.19585/j.zjdl.201711017.
[24] CAMPAGNOLO F, MOLDER A, SCHREIBER J, et al. Comparison of analytical wake models with wind tunnel data [J]. Journal of physics: conference series, 2019, 1256: 012006. DOI:  10.1088/1742-6596/1256/1/012006.
[25] BARTHELMIE R J, LARSEN G C, FRANDSEN S T, et al. Comparison of wake model simulations with offshore wind turbine wake profiles measured by sodar [J]. Journal of atmospheric and oceanic technology, 2006, 23(7): 888-901. DOI:  10.1175/JTECH1886.1.
[26] GӦÇMEN T, LAAN P V D, RÉTHORÉ P E, et al. Wind turbine wake models developed at the technical university of Denmark: a review [J]. Renewable and sustainable energy reviews, 2016, 60: 752-769. DOI:  10.1016/j.rser.2016.01.113.
[27] JEON S, KIM B, HUH J. Comparison and verification of wake models in an onshore wind farm considering single wake condition of the 2 MW wind turbine [J]. Energy, 2015, 93: 1769-1777. DOI:  10.1016/j.energy.2015.09.086.