[1] 王新平, 苏畅, 文虎, 等. 双碳战略下中国能源工业转型路径研究 [J]. 技术与创新管理, 2022, 43(2): 141-150. DOI:  10.14090/j.cnki.jscx.2022.0202.

WANG X P, SU C, WEN H, et al. Research on China's energy industry transformation path under double carbon strategy [J]. Technology and Innovation Management, 2022, 43(2): 141-150. DOI:  10.14090/j.cnki.jscx.2022.0202.
[2] 赵卫东, 赵越. 工业领域实现“双碳”目标常见误区分析及对策建议 [J]. 工业技术创新, 2022, 9(1): 63-69. DOI:  10.14103/j.issn.2095-8412.2022.01.010.

ZHAO W D, ZHAO Y. Analysis of common misunderstandings in realizing the "Double Carbon" goal in industry and countermeasures [J]. Industrial Technology Innovation, 2022, 9(1): 63-69. DOI:  10.14103/j.issn.2095-8412.2022.01.010.
[3] 庞凌云, 翁慧, 常靖, 等. 中国石化化工行业二氧化碳排放达峰路径研究 [J]. 环境科学研究, 2022, 35(2): 356-367. DOI:  10.13198/j.issn.1001-6929.2021.11.26.

PANG L Y, WENG H, CHANG J, et al. Pathway of carbon emission peak for China's petrochemical and chemical industries [J]. Research of Environmental Sciences, 2022, 35(2): 356-367. DOI:  10.13198/j.issn.1001-6929.2021.11.26.
[4] ZHAO H, WU Q, HU S, et al. Review of energy storage system for wind power integration support [J]. Applied Energy, 2015(137): 545-553. DOI:  10.1016/j.apenergy.2014.04.103.
[5] DÍAZ-GONZÁLEZ F, SUMPER A, GOMIS-BELLMUNT O, et al. A review of energy storage technologies for wind power applications [J]. Renewable and Sustainable Energy Reviews, 2012, 16(4): 2154-2171. DOI:  10.1016/j.rser.2012.01.02.
[6] SUNDARARAGAVAN S, BAKER E. Evaluating energy storage technologies for wind power integration [J]. Solar Energy, 2012, 86(9): 2707−2717. DOI:  10.1016/j.solener.2012.06.013.
[7] FOLEY A M, LEAHY P G, MARVUGLIA A, et al. Current methods and advances in forecasting of wind power generation [J]. Renewable Energy, 2012, 37(1): 1-8. DOI:  10.1016/j.renene.2011.05.033.
[8] 陈彬, 谢和平, 刘涛, 等. 碳中和背景下先进制氢原理与技术研究进展 [J]. 工程科学与技术, 2022, 54(1): 106-116. DOI:  10.15961/j.jsuese.202100686.

CHEN B, XIE H P, LIU T, et al. Principles and progress of advanced hydrogen production technologies in the context of carbon neutrality [J]. Advanced Engineering Sciences, 2022, 54(1): 106-116. DOI:  10.15961/j.jsuese.202100686.
[9] 聂家波, 邓建悦. 燃料电池用氢气的制备工艺探讨 [J]. 化工技术与开发, 2021, 327(8): 46-50. DOI:  10.3969/j.issn.1671-9905.2021.08.013.

NIE J B, DENG J Y. Discussion on preparation technology of hydrogen for fuel cell [J]. Technology & Development of Chemical Industry, 2021, 327(8): 46-50. DOI:  10.3969/j.issn.1671-9905.2021.08.013.
[10] 何泽兴, 史成香, 陈志超, 等. 质子交换膜电解水制氢技术的发展现状及展望 [J]. 化工进展, 2021, 40(9): 4762-4773. DOI:  10.16085/j.issn.1000-6613.2021-0429.

HE Z X, SHI C X, CHEN Z C, et al. Development status and prospects of proton exchange membrane water electrolysis [J]. Chemical Industry and Engineering Progress, 2021, 40(9): 4762-4773. DOI:  10.16085/j.issn.1000-6613.2021-0429.
[11] 孟凡, 张惠铃, 姬姗姗, 等. 高效电解水制氢发展现状与技术优化策略 [J]. 黑龙江大学自然科学学报, 2021, 38(6): 702-713. DOI:  10.13482/j.issn1001-7011.2021.10.180.

MENG F, ZHANG H L, JI S S, et al. Progress and technology strategies of hydrogen evolution reaction by high efficiency water electrolysi [J]. Journal of Natural Science of Heilongjiang University, 2021, 38(6): 702-713. DOI:  10.13482/j.issn1001-7011.2021.10.180.
[12] 李星国. 氢气制备和储运的状况与发展 [J]. 科学通报, 2022, 67(增刊1): 425-436. DOI:  10.1360/TB-2021-0715.

LI X G. Status and development of hydrogen preparation, storage and transportation [J]. Chinese Science Bulletin, 2022, 67(Supp. 1): 425-436. DOI:  10.1360/TB-2021-0715.
[13] 位召祥, 张淑兴, 刘世学. 固体氧化物电解制氢技术现状及面临问题分析 [J]. 科技创新与应用, 2021, 11(35): 36-39. DOI:  10.19981/j.CN23-1581/G3.2021.35.009.

WEI Z X, ZHANG S X, LIU S X. Development status and problems of hydrogen production by IGH temperature solid oxide electrolysis [J]. Technology Innovation and Application, 2021, 11(35): 36-39. DOI:  10.19981/j.CN23-1581/G3.2021.35.009.
[14] SCHEFOLD J, BRISSE A, POEPKE H. 23,000 h steam electrolysis with an electrolyte supported solid oxide cell [J]. International Journal of Hydrogen Energy, 2017, 42(19): 13415-13426. DOI:  10.1016/j.ijhydene.2017.01.072.
[15] 曹军文, 张文强, 李一枫, 等. 中国制氢技术的发展现状 [J]. 化学进展, 2021, 33(12): 2215-2244. DOI:  10.7536/PC201128.

CAO J W, ZHANG W Q, LI Y F, et al. Development status of hydrogen production technology in China [J]. Chemical Industry and Engineering Progress, 2021, 33(12): 2215-2244. DOI:  10.7536/PC201128.
[16] 李方园, 侯永江, 国洁, 等. 非贵金属光电催化材料分解水制氢研究进展 [J]. 应用化工, 2021, 50(11): 3206-3209. DOI:  10.16581/j.cnki.issn1671-3206.20211011.001.

LI F Y, HOU Y J, GUO J, et al. Reaerch progress of non-precious metal photoelectrocatalytic materials splitting water to produce hydrogen [J]. Applied Chemical Inductry, 2021, 50(11): 3206-3209. DOI:  10.16581/j.cnki.issn1671-3206.20211011.001.
[17] 杨玉蓉, 张坤. 光催化剂分解水制氢性能研究 [J]. 黑河学院学报, 2021, 12(5): 180-181. DOI:  10.3969/j.issn.16749499.2021.05.058.

YANG Y R, ZHANG K. On the performance of photocatalytic water splitting [J]. Journal of Heihe University, 2021, 12(5): 180-181. DOI:  10.3969/j.issn.16749499.2021.05.058.
[18] LIU W, LIU C, GOGOI P, et al. Overview of biomass conversion to electricity and hydrogen and recent developments in low-temperature electrochemical approaches [J]. Engineering, 2020, 6(12): 1351-1363. DOI:  10.1016/j.eng.2020.02.021.
[19] 高宠明. 耦合制氢装置的炼厂氢气网络综合优化 [D]. 大连: 大连理工大学, 2020. DOI:  10.26991/d.cnki.gdllu.2020.003410.

GAO C M. Comprehensive optimization of refinery hydrogen network for coupling hydrogen production unit [D]. Dalian: Dalian University of Technology, 2020. DOI: 10.26991/d.cnki.gdllu.2020.003410.
[20] 孙雪婷, 林堂茂. 炼厂制氢技术发展现状 [J]. 当代化工, 2022, 51(2): 451-455. DOI:  10.13840/j.cnki.cn21-1457/tq.2022.02.007.

SUN X T, LIN T M. Development status of hydrogen production technplpgy in refinery [J]. Contemporary Chemical Industry, 2022, 51(2): 451-455. DOI:  10.13840/j.cnki.cn21-1457/tq.2022.02.007.
[21] 瞿国华. 炼厂用氢的低成本战略探讨 [J]. 石油化工技术经济, 2007, 109(2): 19-22. DOI:  10.3969/j.issn.1674-1099.2007.02.005.

QU G H. Study on cost leadership strategy of hydrogen utilization in petroleum refining plants [J]. Techno-Economics in Petrochemicals, 2007, 109(2): 19-22. DOI:  10.3969/j.issn.1674-1099.2007.02.005.
[22] 王首宝, 莫力根. 丙烷脱氢尾气精制氢气过程中PSA技术的应用研究 [J]. 石化技术, 2020, 27(1): 253-256. DOI:  10.3969/j.issn.1006-0235.2020.01.160.

WANG S B, MO L G. Application of PSA technology in the process of hydrogen production from propane dehydrogenation tail gas [J]. Petrochemical Industry Technology, 2020, 27(1): 253-256. DOI:  10.3969/j.issn.1006-0235.2020.01.160.
[23] COUCH K. 未来炼厂白皮书六大关键能效分析 [R]. 厦门: 霍尼韦尔, 2021.

COUCH K. White paper on the future refinery-analysis of 6 critical efficiencies [R]. Xiamen: Honeywell, 2021.
[24] 孙建怀. 利用PSA技术回收炼油厂干气中氢气的实践 [J]. 炼油技术与工程, 2018, 48(5): 6-11. DOI:  10.3969/j.issn.1002-106X.2018.05.002.

SUN J H. Commercial application of PSA process to recover hydrogen from refinery dry gas [J]. Petroleum Refinery Engineering, 2018, 48(5): 6-11. DOI:  10.3969/j.issn.1002-106X.2018.05.002.
[25] 王永锋, 张雷. 氢气提纯工艺及技术选择 [J]. 化工设计, 2015, 25(2): 14-17. DOI:  10.15910/j.cnki.1007-6247.2015.02.004.

WANG Y F, ZHANG L. Hydrogen purification process and technology selection [J]. Chemical Engineering Design, 2015, 25(2): 14-17. DOI:  10.15910/j.cnki.1007-6247.2015.02.004.
[26] 白尚奎, 周伟民, 田婷婷, 等. 膜分离与变压吸附耦合技术在炼厂氢气回收中的应用 [J]. 天然气化工(C1化学与化工), 2021, 46(增刊1): 113-117. DOI:  10.3969/j.issn.1001-9219.2021.z1.018.

BAI S K, ZHOU W M, TIAN T T, et al. Application of membrane separation and PSA coupling technology in hydrogen recovery in refineries [J]. Natural Gas Chemical Industry, 2021, 46(Supp. 1): 113-117. DOI:  10.3969/j.issn.1001-9219.2021.z1.018.
[27] 周麓波. 构建“未来炼厂”正当时 [J]. 流程工业, 2021(3): 10-13.

ZHOU L B. Time to build the "Refinery of the Future" [J]. Process, 2021(3): 10-13.