[1] 张智刚, 康重庆. 碳中和目标下构建新型电力系统的挑战与展望 [J]. 中国电机工程学报, 2022, 42(8): 2806-2818. DOI:  10.13334/j.0258-8013.pcsee.220467.

ZHANG Z G, KANG C Q. Challenges and prospects for constructing the new-type power system towards a carbon neutrality future [J]. Proceedings of the CSEE, 2022, 42(8): 2806-2818. DOI:  10.13334/j.0258-8013.pcsee.220467.
[2] 舒印彪, 张丽英, 张运洲, 等. 我国电力碳达峰、碳中和路径研究 [J]. 中国工程科学, 2021, 23(6): 1-14. DOI:  10.15302/J-SSCAE-2021.06.001.

SHU Y B, ZHANG L Y, ZHANG Y Z, et al. Carbon peak and carbon neutrality path for China′s power industry [J]. Strategic study of CAE, 2021, 23(6): 1-14. DOI:  10.15302/J-SSCAE-2021.06.001.
[3] 葛畅, 阎洁, 刘永前, 等. 海上风电场运行控制维护关键技术综述 [J]. 中国电机工程学报, 2022, 42(12): 4278-4291. DOI:  10.13334/j.0258-8013.pcsee.220637.

GE C, YAN J, LIU Y Q, et al. Review of key technologies for operation control and maintenance of offshore wind farm [J]. Proceedings of the CSEE, 2022, 42(12): 4278-4291. DOI:  10.13334/j.0258-8013.pcsee.220637.
[4] 官嫣嫣, 庄佳才. 基于风险管理的海上风电进度管理方法研究 [J]. 南方能源建设, 2022, 9(1): 34-39. DOI:  10.16516/j.gedi.issn2095-8676.2022.01.005.

GUAN Y Y, ZHUANG J C. Research on schedule management method of offshore wind power based on risk management [J]. Southern energy construction, 2022, 9(1): 34-39. DOI:  10.16516/j.gedi.issn2095-8676.2022.01.005.
[5] 田帅. 新能源风险投资全周期风险管理体系的构建 [J]. 南方能源建设, 2022, 9(1): 40-46. DOI:  10.16516/j.gedi.issn2095-8676.2022.01.006.

TIAN S. Construction of the whole cycle risk management system of new energy venture capital [J]. Southern energy construction, 2022, 9(1): 40-46. DOI:  10.16516/j.gedi.issn2095-8676.2022.01.006.
[6] 晁化伟. 计及恶劣天气影响的海上风电场可靠性评估与维修/维护资源优化 [D]. 重庆: 重庆大学, 2019. DOI: 10.27670/d.cnki.gcqdu.2019.002117.

CHAO H W. Offshore wind farms reliability evaluation and repair/maintenance resources optimization considering severe weather conditions [D]. Chongqing: Chongqing University, 2019. DOI: 10.27670/d.cnki.gcqdu.2019.002117.
[7] 马广璐. 风电机组机会维修策略研究 [D]. 北京: 华北电力大学(北京), 2021. DOI: 10.27140/d.cnki.ghbbu.2021.000562.

MA G L. Research on opportunity maintenance strategy of wind turbine [D]. Beijing: North China Electric Power University (Beijing), 2021. DOI: 10.27140/d.cnki.ghbbu.2021.000562.
[8] 黄玲玲, 曹家麟, 张开华, 等. 海上风电机组运行维护现状研究与展望 [J]. 中国电机工程学报, 2016, 36(3): 729-738. DOI:  10.13334/j.0258-8013.pcsee.2016.03.017.

HUANG L L, CAO J L, ZHANG K H, et al. Status and prospects on operation and maintenance of offshore wind turbines [J]. Proceedings of the CSEE, 2016, 36(3): 729-738. DOI:  10.13334/j.0258-8013.pcsee.2016.03.017.
[9] 符杨, 黄路遥, 刘璐洁, 等. 基于状态自适应评估的海上风电机组预防性维护策略 [J]. 电力自动化设备, 2022, 42(1): 1-9. DOI:  10.16081/j.epae.202110009.

FU Y, HUANG L Y, LIU L J, et al. Preventive maintenance strategy for offshore wind turbine based on state adaptive assessment [J]. Electric power automation equipment, 2022, 42(1): 1-9. DOI:  10.16081/j.epae.202110009.
[10] SI X S, LI T M, ZHANG Q, et al. An optimal condition-based replacement method for systems with observed degradation signals [J]. IEEE transactions on reliability, 2018, 67(3): 1281-1293. DOI:  10.1109/TR.2018.2830188.
[11] 李锁, 黄玲玲, 刘阳, 等. 基于风电机组状态信息的海上风电场维护策略 [J]. 现代电力, 2022, 39(1): 26-35. DOI:  10.19725/j.cnki.1007-2322.2021.0004.

LI S, HUANG L L, LIU Y, et al. An offshore wind farm maintenance strategy based on wind turbine condition information [J]. Modern electric power, 2022, 39(1): 26-35. DOI:  10.19725/j.cnki.1007-2322.2021.0004.
[12] 黄海悦. 基于零件可靠度的海上风电机组机会维护策略 [D]. 北京: 华北电力大学(北京), 2018.

HUANG H Y. Offshore wind turbine opportunity maintenance strategy based on component reliability [D]. Beijing: North China Electric Power University (Beijing), 2018.
[13] 苏春, 胡照勇, 郑玉巧. 基于可用度约束的风力机单部件顺序维修优化 [J]. 东南大学学报(自然科学版), 2019, 49(1): 110-115. DOI:  10.3969/j.issn.1001-0505.2019.01.016.

SU C, HU Z Y, ZHENG Y Q. Single part sequential maintenance optimization for wind turbines based on availability constraint [J]. Journal of southeast university (natural science edition), 2019, 49(1): 110-115. DOI:  10.3969/j.issn.1001-0505.2019.01.016.
[14] 逯红霞, 张蕊萍, 董海鹰. 考虑故障相关性的风电机组维修策略 [J]. 可再生能源, 2020, 38(4): 477-483. DOI:  10.13941/j.cnki.21-1469/tk.2020.04.009.

LU H X, ZHANG R P, DONG H Y. Considering maintenance strategy of wind turbines with fault correlation [J]. Renewable energy resources, 2020, 38(4): 477-483. DOI:  10.13941/j.cnki.21-1469/tk.2020.04.009.
[15] 符杨, 许伟欣, 刘璐洁, 等. 考虑天气因素的海上风电机组预防性机会维护策略优化方法 [J]. 中国电机工程学报, 2018, 38(20): 5947-5956. DOI:  10.13334/j.0258-8013.pcsee.171695.

FU Y, XU W X, LIU L J, et al. Optimization of preventive opportunistic maintenance strategy for offshore wind turbine considering weather conditions [J]. Proceedings of the CSEE, 2018, 38(20): 5947-5956. DOI:  10.13334/j.0258-8013.pcsee.171695.
[16] 符杨, 杨凡, 刘璐洁, 等. 考虑部件相关性的海上风电机组预防性维护策略 [J]. 电网技术, 2019, 43(11): 4057-4063. DOI:  10.13335/j.1000-3673.pst.2019.0178.

FU Y, YANG F, LIU L J, et al. Preventive maintenance strategy for offshore wind turbines considering component correlation [J]. Power system technology, 2019, 43(11): 4057-4063. DOI:  10.13335/j.1000-3673.pst.2019.0178.
[17] IRAWAN C A, OUELHADJ D, JONES D, et al. Optimisation of maintenance routing and scheduling for offshore wind farms [J]. European journal of operational research, 2017, 256(1): 76-89. DOI:  10.1016/j.ejor.2016.05.059.
[18] 王东. 多重相关性影响下的风机系统维护决策优化 [D]. 上海: 上海海洋大学, 2022. DOI: 10.27314/d.cnki.gsscu.2022.000433.

WANG D. Optimization of wind turbine system maintenance decision under the influence of multiple correlations [D]. Shanghai: Shanghai Ocean University, 2022. DOI: 10.27314/d.cnki.gsscu.2022.000433.
[19] 鞠冠章, 王靖然, 崔琛, 等. 极端天气事件对新能源发电和电网运行影响研究 [J]. 智慧电力, 2022, 50(11): 77-83. DOI:  10.3969/j.issn.1673-7598.2022.11.013.

JU G Z, WANG J R, CUI C, et al. Impact of extreme weather events on new energy power generation and power grid operation [J]. Smart power, 2022, 50(11): 77-83. DOI:  10.3969/j.issn.1673-7598.2022.11.013.
[20] 程江洲, 冯馨以, 冯梦婷, 等. 计及气象因素的风电机组故障诊断与风险预测 [J]. 科学技术与工程, 2022, 22(22): 9645-9651. DOI:  10.3969/j.issn.1671-1815.2022.22.025.

CHENG J Z, FENG X Y, FENG M T, et al. Wind turbine fault diagnosis and risk prediction considering meteorological factors [J]. Science technology and engineering, 2022, 22(22): 9645-9651. DOI:  10.3969/j.issn.1671-1815.2022.22.025.
[21] 李凌飞, 孙悦, 黄莹, 等. 考虑恶劣天气影响的海上风电场及柔性直流并网系统可靠性评估 [J]. 南方电网技术, 2020, 14(12): 32-42. DOI:  10.13648/j.cnki.issn1674-0629.2020.12.005.

LI L F, SUN Y, HUANG Y, et al. Reliability evaluation of offshore wind farm and VSC-HVDC integrated system considering the influence of extreme weather [J]. Southern power system technology, 2020, 14(12): 32-42. DOI:  10.13648/j.cnki.issn1674-0629.2020.12.005.
[22] 李欣, 段詠程. 基于改进隐马尔可夫模型的网络安全态势评估方法 [J]. 计算机科学, 2020, 47(7): 287-291. DOI:  10.11896/jsjkx.190300045.

LI X, DUAN Y C. Network security situation assessment method based on improved hidden Markov model [J]. Computer science, 2020, 47(7): 287-291. DOI:  10.11896/jsjkx.190300045.
[23] 朱熀秋, 樊帅. 基于改进连续隐马尔可夫模型的六极径向主动磁轴承转子位移软测量 [J]. 中国电机工程学报, 2021, 41(11): 3933-3943. DOI:  10.13334/j.0258-8013.pcsee.201007.

ZHU H Q, FAN S. Soft-sensing modeling for rotor displacements of six-pole radial active magnetic bearing using improved continuous hidden Markov model [J]. Proceedings of the CSEE, 2021, 41(11): 3933-3943. DOI:  10.13334/j.0258-8013.pcsee.201007.
[24] 郑守红, 毕果, 苏史博, 等. 基于连续隐马尔可夫模型的砂轮磨削性能退化评估 [J]. 厦门大学学报(自然科学版), 2021, 60(6): 1064-1070. DOI:  10.6043/j.issn.0438-0479.202007015.

ZHENG S H, BI G, SU S B, et al. Evaluation of grinding wheel degradation performance based on continuous hidden Markov model [J]. Journal of Xiamen University (natural science edition), 2021, 60(6): 1064-1070. DOI:  10.6043/j.issn.0438-0479.202007015.
[25] 沈云云. 基于连续隐马尔可夫模型的语音识别抗噪问题研究 [D]. 哈尔滨: 哈尔滨工业大学, 2020. DOI: 10.27061/d.cnki.ghgdu.2020.003973.

SHEN Y Y. Research on anti-noise of speech recognition based on continuous hidden Markov model [D]. Harbin: Harbin Institute of Technology, 2020. DOI: 10.27061/d.cnki.ghgdu.2020.003973.
[26] 刘嘉宁, 潮铸, 钟华赞, 等. 电网调度操作过程中的天气风险源建模及分析 [J]. 广东技术师范学院学报(自然科学), 2016, 37(11): 8-12,46. DOI:  10.13408/j.cnki.gjsxb.2016.11.003.

LIU J N, CHAO Z, ZHONG H Z, et al. Weather risk sources quantified model and analysis for power grid dispatching [J]. Journal of Guangdong Polytechnic Normal University, 2016, 37(11): 8-12,46. DOI:  10.13408/j.cnki.gjsxb.2016.11.003.
[27] 熊小伏, 王尉军, 于洋, 等. 多气象因素组合的输电线路风险分析 [J]. 电力系统及其自动化学报, 2011, 23(6): 11-15,28. DOI:  10.3969/j.issn.1003-8930.2011.06.003.

XIONG X F, WANG W J, YU Y, et al. Risk analysis method for transmission line combining of various meteorological factors [J]. Proceedings of the CSU-EPSA, 2011, 23(6): 11-15,28. DOI:  10.3969/j.issn.1003-8930.2011.06.003.
[28] 王建, 姚江宁, 刘泽青, 等. 恶劣天气下配电网故障统计分析及其概率分布拟合 [J]. 电力系统保护与控制, 2022, 50(17): 143-153. DOI:  10.19783/j.cnki.pspc.211536.

WANG J, YAO J N, LIU Z Q, et al. Fault statistical analysis and probability distribution fitting for a power distribution network in adverse weather conditions [J]. Power system protection and control, 2022, 50(17): 143-153. DOI:  10.19783/j.cnki.pspc.211536.
[29] 高晨, 赵勇, 汪德良, 等. 海上风电机组电气设备状态检修技术研究现状与展望 [J]. 电工技术学报, 2022, 37(增刊1): 30-42. DOI:  10.19595/j.cnki.1000-6753.tces.L90275.

GAO C, ZHAO Y, WANG D L, et al. Research status and prospect of condition based maintenance technology for offshore wind turbine electrical equipment [J]. Transactions of China electrotechnical society, 2022, 37(Suppl. 1): 30-42. DOI:  10.19595/j.cnki.1000-6753.tces.L90275.
[30] 罗森森. 基于故障数据和监测数据的风电机组优化维修策略研究 [D]. 北京: 华北电力大学(北京), 2019. DOI: 10.27140/d.cnki.ghbbu.2019.000377.

LUO S S. Research on optimization maintenance strategy of wind turbine based on fault data and monitoring data [D]. Beijing: North China Electric Power University (Beijing), 2019. DOI: 10.27140/d.cnki.ghbbu.2019.000377.
[31] 邓杰, 姜飞, 王文烨, 等. 考虑电热柔性负荷与氢能精细化建模的综合能源系统低碳运行 [J]. 电网技术, 2022, 46(5): 1692-1702. DOI:  10.13335/j.1000-3673.pst.2021.1373.

DENG J, JIANG F, WANG W Y, et al. Low-carbon optimized operation of integrated energy system considering electric-heat flexible load and hydrogen energy refined modeling [J]. Power system technology, 2022, 46(5): 1692-1702. DOI:  10.13335/j.1000-3673.pst.2021.1373.
[32] 马志侠, 张林鍹, 郑兴, 等. 基于PEMFC-P2G与风光不确定的综合能源系统优化调度 [J]. 太阳能学报, 2022, 43(6): 441-447. DOI:  10.19912/j.0254-0096.tynxb.2022-0345.

MA Z X, ZHANG L X, ZHENG X, et al. Optimal scheduling of integrated energy system based on PEMFC-P2G and inpact of wind power and photovoltaic uncertainty [J]. Acta energiae solaris sinica, 2022, 43(6): 441-447. DOI:  10.19912/j.0254-0096.tynxb.2022-0345.
[33] 蓝静, 朱继忠, 李盛林, 等. 考虑碳惩罚的电化学储能消纳风光与调峰研究 [J]. 综合智慧能源, 2022, 44(1): 9-17. DOI:  10.3969/j.issn.2097-0706.2022.01.002.

LAN J, ZHU J Z, LI S L, et al. Research on electrochemical energy storage to assist new energy consumption and peak load regulation considering carbon penalty [J]. Integrated intelligent energy, 2022, 44(1): 9-17. DOI:  10.3969/j.issn.2097-0706.2022.01.002.
[34] 谢敏, 何润泉, 刘明波, 等. 考虑复杂振动区特性的梯级水火电低碳机组组合模型与算法研究 [J]. 电网技术, 2023, 47(2): 645-657. DOI:  10.13335/j.1000-3673.pst.2022.0900.

XIE M, HE R Q, LIU M B, et al. Research on the model and algorithm for the hydro-thermal low-carbon unit commitment problem considering forbidden zone constraints [J]. Power system technology, 2023, 47(2): 645-657. DOI:  10.13335/j.1000-3673.pst.2022.0900.
[35] 李建涛, 姚鸿韦, 梅德文. 碳中和目标下我国碳市场定价机制研究 [J]. 环境保护, 2021, 49(14): 24-29. DOI:  10.14026/j.cnki.0253-9705.2021.14.009.

LI J T, YAO H W, MEI D W. Research on the pricing mechanism of China's carbon market under carbon neutralization target [J]. Environmental protection, 2021, 49(14): 24-29. DOI:  10.14026/j.cnki.0253-9705.2021.14.009.
[36] 汪超群, 韦化, 吴思缘. 计及潮流约束的水火电力系统机组组合问题的分解–协调算法 [J]. 中国电机工程学报, 2017, 37(11): 3148-3161. DOI:  10.13334/j.0258-8013.pcsee.160677.

WANG C Q, WEI H, WU S Y. A decomposition-coordination algorithm applied to hydro-thermal unit commitment problems with power flow constraints [J]. Proceedings of the CSEE, 2017, 37(11): 3148-3161. DOI:  10.13334/j.0258-8013.pcsee.160677.
[37] 代江, 田年杰, 姜有泉, 等. 考虑梯级耦合的水火电检修计划与机组组合协同优化 [J]. 电力工程技术, 2022, 41(3): 83-91. DOI:  10.12158/j.2096-3203.2022.03.010.

DAI J, TIAN N J, JIANG Y Q, et al. Collaborative maintenance scheduling and unit commitment for hydropower and thermal power systems considering cascade hydropower coupling [J]. Electric power engineering technology, 2022, 41(3): 83-91. DOI:  10.12158/j.2096-3203.2022.03.010.
[38] 付聪, 王砚平, 刘俊磊, 等. 基于辅助优化问题的安全约束机组组合约束削减方法 [J]. 电力系统保护与控制, 2021, 49(21): 9-17. DOI:  10.19783/j.cnki.pspc.210152.

FU C, WANG Y P, LIU J L, et al. Constraint reduction method for security-constrained unit commitment based on an auxiliary optimization problem [J]. Power system protection and control, 2021, 49(21): 9-17. DOI:  10.19783/j.cnki.pspc.210152.
[39] 代江, 田年杰, 姜有泉, 等. 考虑天然来水随机性的水火电系统机组检修计划 [J]. 电力系统保护与控制, 2022, 50(12): 44-53. DOI:  10.19783/j.cnki.pspc.211035.

DAI J, TIAN N J, JIANG Y Q, et al. Generator maintenance schedule of hydro-thermal power systems considering randomness of natural water inflow [J]. Power system protection and control, 2022, 50(12): 44-53. DOI:  10.19783/j.cnki.pspc.211035.
[40] 梅竞成, 齐冬莲, 张建良, 等. 一种考虑预测电价和碳排放成本的大规模机组检修决策方法 [J]. 电子与信息学报, 2022, 44(11): 3767-3776. DOI:  10.11999/JEIT220491.

MEI J C, QI D L, ZHANG J L, et al. A decision method of the large-scale unit maintenance scheduling considering predicted electricity price and carbon emission cost [J]. Journal of electronics & information technology, 2022, 44(11): 3767-3776. DOI:  10.11999/JEIT220491.
[41] 俞晨玺, 孔维禄, 俞柏红, 等. 考虑需求响应的多目标机组检修调度优化 [J]. 电力系统保护与控制, 2020, 48(11): 110-118. DOI:  10.19783/j.cnki.pspc.190920.

YU C X, KONG W L, YU B H, et al. Multi-objective optimization of generation maintenance scheduling considering demand response [J]. Power system protection and control, 2020, 48(11): 110-118. DOI:  10.19783/j.cnki.pspc.190920.
[42] 代江, 姜有泉, 田年杰, 等. 考虑发电权交易的水火电机组检修双层优化 [J]. 高电压技术, 2022, 48(10): 4143-4153. DOI:  10.13336/j.1003-6520.hve.20210778.

DAI J, JIANG Y Q, TIAN N J, et al. Bi-level optimization for hydrothermal unit maintenance considering generation right transaction [J]. High voltage engineering, 2022, 48(10): 4143-4153. DOI:  10.13336/j.1003-6520.hve.20210778.
[43] WANG Y, KIRSCHEN D S, ZHONG H W, et al. Coordination of generation maintenance scheduling in electricity markets [J]. IEEE transactions on power systems, 2016, 31(6): 4565-4574. DOI:  10.1109/TPWRS.2016.2514527.