[1] 李喜来, 李永双, 贾江波, 等. 中国电网技术成就、挑战与发展 [J]. 南方能源建设, 2016, 3(2): 1-8. DOI:  10.16516/j.gedi.issn2095-8676.2016.02.001.

LI X L, LI Y S, JIA J B, et al. Review of the achievements, challenges and development of power system technology in China [J]. Southern Energy Construction, 2016, 3(2): 1-8. DOI:  10.16516/j.gedi.issn2095-8676.2016.02.001.
[2] 张晶, 李彬. 新一代智能电网技术标准体系支撑电网高质量发展 [J]. 供用电, 2020, 37(3): 2+1.

ZHANG J, LI B. New generation technical standard systems for smart grid support high-quality development of power grid [J]. Distribution & Utilization, 2020, 37(3): 2+1.
[3] 岳浩, 陈媛, 林芳, 等. 中欧输电线路电气设计标准主要内容对比研究 [J]. 电力勘测设计, 2018(12): 24-28. DOI:  10.13500/j.cnki.11-4908/tk.2018.12.005.

YUE H, CHEN Y, LIN F, et al. Comparative study on main contents of China and European Union electric design standards of transmission line [J]. Electric Power Survey & Design, 2018(12): 24-28. DOI:  10.13500/j.cnki.11-4908/tk.2018.12.005.
[4] 李敏生, 王振华. 中国输电线路规范的风荷载计算比较 [J]. 南方能源建设, 2018, 5(3): 89-93. DOI:  10.16516/j.gedi.issn2095-8676.2018.03.014.

LI M S, WANG Z H. Comparison of wind load calculation for China transmission codes [J]. Southern Energy Construction, 2018, 5(3): 89-93. DOI:  10.16516/j.gedi.issn2095-8676.2018.03.014.
[5] 黎景辉, 李敏生. 输电线路历年规程与新荷载规范风荷载对比 [J]. 南方能源建设, 2020, 7(3): 102-106. DOI:  10.16516/j.gedi.issn2095-8676.2020.03.013.

LI J H, LI M S. Comparison of wind load on transmission lines between old codes and new load code [J]. Southern Energy Construction, 2020, 7(3): 102-106. DOI:  10.16516/j.gedi.issn2095-8676.2020.03.013.
[6] 白建基, 王芳, 邓成刚. 欧洲管件标准与中国管件标准对比研究 [J]. 南方能源建设, 2021, 8(4): 79-84. DOI:  10.16516/j.gedi.issn2095-8676.2021.04.011.

BAI J J, WANG F, DENG C G. Comparative research on European pipe fitting standards and Chinese pipe fitting standards [J]. Southern Energy Construction, 2021, 8(4): 79-84. DOI:  10.16516/j.gedi.issn2095-8676.2021.04.011.
[7] 李正良, 曹哲贤, 施菁华, 等. 输电塔不等边角钢交叉斜材稳定承载力研究 [J]. 建筑钢结构进展, 2020, 22(2): 111-120. DOI:  10.13969/j.cnki.cn31-1893.2020.02.014.

LI Z L, CAO Z X, SHI J H, et al. Investigation on the stability bearing capacity of unequal angle steel cross bracing in transmission towers [J]. Progress in Steel Building Structures, 2020, 22(2): 111-120. DOI:  10.13969/j.cnki.cn31-1893.2020.02.014.
[8] 高嘉, 郑智慧, 熊纽, 等. 基于广域连接的广东地区接地极连接方案研究 [J]. 南方能源建设, 2021, 8(4): 115-122. DOI:  10.16516/j.gedi.issn2095-8676.2021.04.015.

GAO J, ZHENG Z H, XIONG N, et al. Research on connection scheme of HVDC WAN grounding electrode in Guangdong based on wide-area connection [J]. Southern Energy Construction, 2021, 8(4): 115-122. DOI:  10.16516/j.gedi.issn2095-8676.2021.04.015.
[9] 刘洪义, 李正良, 刘凯. 输电线路角钢塔交叉斜材极限承载力研究 [J]. 特种结构, 2020, 37(3): 55-62. DOI:  10.19786/j.tzjg.2020.03.011.

LIU H Y, LI Z L, LIU K. Study on the bearing capacity of cross-diagonal bracing in transmission line [J]. Special Structures, 2020, 37(3): 55-62. DOI:  10.19786/j.tzjg.2020.03.011.
[10] 黄佩, 吴海洋, 胡星. 输电铁塔角钢构件计算长度修正系数研究 [J]. 电力勘测设计, 2019, 31(5): 35-39. DOI:  10.13500/j.dlkcsj.issn1671-9913.2019.05.007.

HUANG P, WU H Y, HU X. Study on the effective length correction factor of transmission tower angel steel [J]. Electric Power Survey & Design, 2019, 31(5): 35-39. DOI:  10.13500/j.dlkcsj.issn1671-9913.2019.05.007.
[11] 王军, 陈驹. 连接方式对内配格构式角钢圆钢管混凝土构件轴拉性能的影响 [J]. 建筑结构学报, 2019, 40(增刊1): 354-361. DOI:  10.14006/j.jzjgxb.2019.S1.047.

WANG J, CHEN J. Influence of connection modes on axial tensile properties of concrete-filled circular steel tubes with latticed angle steels inside [J]. Journal of Building Structures, 2019, 40(Supp. 1): 354-361. DOI:  10.14006/j.jzjgxb.2019.S1.047.
[12] 王军. 内配格构式角钢圆钢管混凝土力学性能研究及应用 [D]. 杭州: 浙江大学, 2018: 27-79.

WANG J. Research and application on the mechanical properties of concrete-filled circular steel tubes with latticed steel angles inside [D]. Hangzhou: Zhejiang University, 2018: 27-79.
[13] 陈哲, 王军, 俞培祥, 等. 内配格构式角钢圆钢管混凝土梁受弯承载力试验及计算 [J]. 钢结构, 2019, 34(2): 41-45,8. DOI:  10.13206/j.gjg201902007.

CHEN Z, WANG J, YU P X, et al. Experiment and calculation of the bending capacity of concrete filled circular steel beams with latticed steel angles inside [J]. Steel Construction, 2019, 34(2): 41-45,8. DOI:  10.13206/j.gjg201902007.
[14] 国家能源局. 架空输电线路杆塔结构设计技术规程: DL/T 5486—2020 [S]. 北京: 中国电力出版社, 2020.

National Energy Administration. Technical specification for the design of steel supporting structures of overhead transmission line: DL/T 5486-2020 [S]. Beijing: China Electric Power Press, 2020.
[15] 国家能源局. 架空输电线路杆塔结构设计技术规定: DL/T 5154—2012 [S]. 北京: 中国电力出版社, 2013.

National Energy Administration. Technical code for the design of tower and pole structures of overhead transmission line: DL/T 5154-2012 [S]. Beijing: China Electric Power Press, 2013.
[16] BSI. Overhead electrical lines exceeding AC 1 kV -Part 1: general requirements - common specifications: BS EN 50341-1: 2012 [S]. Brussels: British Standards Institution, 2013.
[17] 庄志翔, 赵雪灵, 熊静进, 等. 220 kV单回路复合杆塔关键技术研究 [J]. 南方能源建设, 2019, 6(2): 77-83. DOI:  10.16516/j.gedi.issn2095-8676.2019.02.014.

ZHUANG Z X, ZHAO X L, XIONG J J, et al. Research on key technologies of 220 kV single circuit composite tower [J]. Southern Energy Construction, 2019, 6(2): 77-83. DOI:  10.16516/j.gedi.issn2095-8676.2019.02.014.
[18] 张少军, 王艳波, 田力男, 等. 铁塔用角钢性能影响因素及断裂机理分析 [J]. 内蒙古电力技术, 2012, 30(6): 6-11.

ZHANG S J, WANG Y B, TIAN L N, et al. Performance influence factors and fracture mechanism of angle steel for tower structure [J]. Inner Mongolia Electric Power, 2012, 30(6): 6-11.
[19] 房正刚, 李正, 李毅刚, 等. 杆塔结构设计规程变化对杆塔通用设计的影响研究 [J/OL]. 建筑结构: 1-6 [2022-09-27]. https://doi.org/10.19701/j.jzjg.LS220106. DOI: 10.19701/j.jzjg.LS220106.

FANG Z G, LI Z, LI Y G, et al. Research on influence of design regulation change of steel supporting structure on its general design [J/OL]. Building Structure: 1-6 [2022-09-27]. https://doi.org/10.19701/j.jzjg.LS220106. DOI: 10.19701/j.jzjg.LS220106.