[1] 郭祚刚, 雷金勇, 邓广义. 匹配新能源电能并网的压缩空气储能站性能研究 [J]. 南方能源建设, 2018, 5(3): 26-32. DOI:  10.16516/j.gedi.issn2095-8676.2018.03.004.

GUO Z G, LEI J Y, DENG G Y. Performance analysis of compressed air energy storage system for grid-connection of renewable power [J]. Southern Energy Construction, 2018, 5(3): 26-32. DOI:  10.16516/j.gedi.issn2095-8676.2018.03.004.
[2] 张东辉, 徐文辉, 门锟, 等. 储能技术应用场景和发展关键问题 [J]. 南方能源建设, 2019, 6(3): 1-5. DOI:  10.16516/j.gedi.issn2095-8676.2019.03.001.

ZHANG D H, XU W H, MEN K, et al. Application scenarios of energy storage and its key issues in development [J]. Southern Energy Construction, 2019, 6(3): 1-5. DOI:  10.16516/j.gedi.issn2095-8676.2019.03.001.
[3] GLAMHEDEN R, CURTIS P. Excavation of a cavern for high-pressure storage of natural gas [J]. Tunnelling and Underground Space Technology, 2006, 21(1): 56-67. DOI:  10.1016/j.tust.2005.06.002.
[4] 文贤馗, 张世海, 王锁斌. 压缩空气储能技术及示范工程综述 [J]. 应用能源技术, 2018(3): 43-48. DOI:  10.3969/j.issn.1009-3230.2018.03.012.

WEN X K, ZHANG S H, WANG S B. Summary of compressed air energy storage technology and demonstration projects [J]. Applied Energy Technology, 2018(3): 43-48. DOI:  10.3969/j.issn.1009-3230.2018.03.012.
[5] PIMM A J, GARVEY S D, DE JONG M. Design and testing of energy bags for underwater compressed air energy storage [J]. Energy, 2014, 66: 496-508. DOI:  10.1016/j.energy.2013.12.010.
[6] 郭丁彰, 尹钊, 周学志, 等. 压缩空气储能系统储气装置研究现状与发展趋势 [J]. 储能科学与技术, 2021, 10(5): 1486-1493. DOI:  10.19799/j.cnki.2095-4239.2021.0356.

GUO D Z, YIN Z, ZHOU X Z, et al. Status and prospect of gas storage device in compressed air energy storage system [J]. Energy Storage Science and Technology, 2021, 10(5): 1486-1493. DOI:  10.19799/j.cnki.2095-4239.2021.0356.
[7] 刘林林. 深冷液化压缩空气储能技术解读 [J]. 华北电业, 2016(4): 47-49.

LIU L L. Cryogenic liquefied compressed air energy storage technology interpretation [J]. North China Power, 2016(4): 47-49.
[8] BORRI E, TAFONE A, ROMAGNOLI A, et al. A review on liquid air energy storage: history, state of the art and recent developments [J]. Renewable and Sustainable Energy Reviews, 2021, 137: 110572. DOI:  10.1016/j.rser.2020.110572.
[9] SMITH E M. Storage of electrical energy using supercritical liquid air [J]. Proceedings of the Institution of Mechanical Engineers, 1977, 191(1): 289-298. DOI:  10.1243/PIME_PROC_1977_191_035_02.
[10] KENJI K, KEIICHI H, TAKAHISA A. Development of generator of liquid air storage energy system [J]. Technical Review - Mitsubishi Heavy Industries, 1998, 35(3): 60-63.
[11] CHINO K, ARAKI H. Evaluation of energy storage method using liquid air [J]. Heat Transfer - Asian Research, 2000, 29(5): 347-357. DOI: 10.1002/1523-1496(200007)29:5<347::AID-HTJ1>3.0.CO;2-A.
[12] MORGAN R E. Liquid air energy storage – from theory to demonstration [J]. International Journal of Environmental Studies, 2016, 73(3): 469-480. DOI:  10.1080/00207233.2016.1189741.
[13] PENG X D, SHE X H, LI C, et al. Liquid air energy storage flexibly coupled with LNG regasification for improving air liquefaction [J]. Applied Energy, 2019, 250: 1190-1201. DOI:  10.1016/j.apenergy.2019.05.040.
[14] HIGHVIEWPOWER. Developed and developing projects[EB/OL]. (2021-11-18) [2022-03-07]. https://highviewpower.com/plants/.
[15] GUIZZI G L, MANNO M, TOLOMEI L M, et al. Thermodynamic analysis of a liquid air energy storage system [J]. Energy, 2015, 93: 1639-1647. DOI:  10.1016/j.energy.2015.10.030.
[16] SCIACOVELLI A, SMITH D, NAVARRO M E, et al. Performance analysis and detailed experimental results of the first liquid air energy storage plant in the world [J]. Journal of Energy Resources Technology, 2018, 140(2): 020908. DOI:  10.1115/1.4038378.
[17] LIN X P, WANG L, XIE N N, et al. Thermodynamic analysis of the cascaded packed bed cryogenic storage based supercritical air energy storage system [J]. Energy Procedia, 2019, 158: 5079-5085. DOI:  10.1016/j.egypro.2019.01.639.
[18] HAMDY S, MOROSUK T, TSATSARONIS G. Cryogenics-based energy storage: evaluation of cold exergy recovery cycles [J]. Energy, 2017, 138: 1069-1080. DOI:  10.1016/j.energy.2017.07.118.
[19] 苏苗印, 张益, 李晶晶. 盘管式蓄冷器在液化空气储能系统的应用研究 [J]. 真空与低温, 2019, 25(3): 209-214. DOI:  10.3969/j.issn.1006-7086.2019.03.010.

SU M Y, ZHANG Y, LI J J. Application of coil regenerator in liquid air energy storage system [J]. Vacuum and Cryogenics, 2019, 25(3): 209-214. DOI:  10.3969/j.issn.1006-7086.2019.03.010.
[20] 贾春蓉, 彭婧, 王洲, 等. 面向液化空气储能系统蓄冷器的新型材料制备及蓄冷特性研究 [J]. 电力电容器与无功补偿, 2021, 42(1): 186-190. DOI:  10.14044/j.1674-1757.pcrpc.2021.01.029.

JIA C R, PENG J, WANG Z, et al. Preparation of new materials and its cold storage performance study for regenerator in liquefied air energy storage [J]. Power Capacitor & Reactive Power Compensation, 2021, 42(1): 186-190. DOI:  10.14044/j.1674-1757.pcrpc.2021.01.029.
[21] 杨德州, 贾春荣, 迟昆, 等. 深冷液化空气储能系统热力学建模与效率分析 [J]. 电力电容器与无功补偿, 2020, 41(6): 185-190. DOI:  10.14044/j.1674-1757.pcrpc.2020.06.030.

YANG D Z, JIA C R, CHI K, et al. Thermodynamic modeling and efficiency analysis of liquid air energy storage [J]. Power Capacitor & Reactive Power Compensation, 2020, 41(6): 185-190. DOI:  10.14044/j.1674-1757.pcrpc.2020.06.030.
[22] DUTTA R, SANDILYA P. Experimental investigations on cold recovery efficiency of packed-bed in cryogenic energy storage system [J]. IOP Conference Series:Materials Science and Engineering, 2020, 755: 012103. DOI:  10.1088/1757-899X/755/1/012103.
[23] 金翼, 王乐, 杨岑玉, 等. 堆积床储冷系统循环性能分析 [J]. 储能科学与技术, 2017, 6(4): 708-718. DOI:  10.12028/j.issn.2095-4239.2017.0083.

JIN Y, WANG L, YANG C Y, et al. Cycle performance of a packed bed based cold storage device [J]. Energy Storage Science and Technology, 2017, 6(4): 708-718. DOI:  10.12028/j.issn.2095-4239.2017.0083.
[24] 安保林, 陈嘉祥, 王俊杰, 等. 液态空气储能系统液化率影响因素研究 [J]. 工程热物理学报, 2019, 40(11): 2478-2482.

AN B L, CHEN J X, WANG J J, et al. Study on the influencing factors on liquid air energy storage system liquefaction rate [J]. Journal of Engineering Thermophysics, 2019, 40(11): 2478-2482.