[1] 易侃, 张子良, 张皓, 等. 海上风能资源评估数值模拟技术现状及发展趋势 [J]. 分布式能源, 2021, 6(1): 1-6. DOI:  10.16513/j.2096-2185.DE.2106004.

YI K, ZHANG Z L, ZHANG H, et al. Technical status and development trends of numerical modeling for offshore wind resource assessment [J]. Distributed energy, 2021, 6(1): 1-6. DOI:  10.16513/j.2096-2185.DE.2106004.
[2] VEERS P, DYKES K, LANTZ E, et al. Grand challenges in the science of wind energy [J]. Science, 2019, 366(6464): eaau2027. DOI:  10.1126/science.aau2027.
[3] 李泽椿, 朱蓉, 何晓凤, 等. 风能资源评估技术方法研究 [J]. 气象学报, 2007, 65(5): 708-717. DOI:  10.11676/qxxb2007.066.

LI Z C, ZHU R, HE X F, et al. Center for wind and solar energy resources assessment [J]. Acta meteorologica sinica, 2007, 65(5): 708-717. DOI:  10.11676/qxxb2007.066.
[4] 张双益, 胡非, 王益群, 等. 大型海上风电场尾流模型及大气稳定度影响研究 [J]. 风能, 2017(8): 62-67. DOI:  10.3969/j.issn.1674-9219.2017.08.015.

ZHANG S Y, HU F, WANG Y Q, et al. Large scale offshore wind farm wake modeling and atmospheric stability impact study [J]. Wind energy, 2017(8): 62-67. DOI:  10.3969/j.issn.1674-9219.2017.08.015.
[5] 吴迪, 刘怀西, 苗得胜. 尾流算法与风向变化对海上风机排布影响研究 [J]. 南方能源建设, 2019, 6(2): 54-58. DOI:  10.16516/j.gedi.issn2095-8676.2019.02.010.

WU D, LIU H X, MIAO D S. Research on offshore wind farm units layout considering the algorithm of wake model and the change of wind direction [J]. Southern energy construction, 2019, 6(2): 54-58. DOI:  10.16516/j.gedi.issn2095-8676.2019.02.010.
[6] BADGER J, FRANK H, HAHMANN A N, et al. Wind-climate estimation based on mesoscale and microscale modeling: statistical-dynamical downscaling for wind energy applications [J]. Journal of applied meteorology and climatology, 2014, 53(8): 1901-1919. DOI:  10.1175/JAMC-D-13-0147.1.
[7] BILAL M, BIRKELUND Y, HOMOLA M, et al. Wind over complex terrain-microscale modelling with two types of mesoscale winds at Nygårdsfjell [J]. Renewable energy, 2016, 99: 647-653. DOI:  10.1016/j.renene.2016.07.042.
[8] 穆海振, 徐家良, 柯晓新, 等. 高分辨率数值模式在风能资源评估中的应用初探 [J]. 应用气象学报, 2006, 17(2): 152-159. DOI:  10.3969/j.issn.1001-7313.2006.02.004.

MU H Z, XU J L, KE X X, et al. Application of high resolution numerical model to wind energy potential assessment [J]. Journal of applied meteorological science, 2006, 17(2): 152-159. DOI:  10.3969/j.issn.1001-7313.2006.02.004.
[9] 房方, 张效宁, 姚贵山, 等. 基于中尺度气象模式分析的海陆风电场间尾流扰动影响评估 [J]. 中国电机工程学报, 2022, 42(13): 4848-4858. DOI:  10.13334/j.0258-8013.pcsee.211796.

FANG F, ZHANG X N, YAO G S, et al. Assessment of the impact of wake interference within onshore and offshore wind farms based on mesoscale meteorological model analysis [J]. Proceedings of the CSEE, 2022, 42(13): 4848-4858. DOI:  10.13334/j.0258-8013.pcsee.211796.
[10] ABERSON S D. The impact of dropwindsonde data from the THORPEX pacific area regional campaign and the NOAA hurricane field program on tropical cyclone forecasts in the global forecast system [J]. Monthly weather review, 2011, 139(9): 2689-2703. DOI:  10.1175/2011MWR3634.1.
[11] HALLY A, RICHARD E, FRESNAY S, et al. Ensemble simulations with perturbed physical parametrizations: Pre-HyMeX case studies [J]. Quarterly journal of the royal meteorological society, 2014, 140(683): 1900-1916. DOI:  10.1002/qj.2257.
[12] SUN G D, MU M. A new approach to identify the sensitivity and importance of physical parameters combination within numerical models using the Lund-Potsdam-Jena (LPJ) model as an example [J]. Theoretical and applied climatology, 2017, 128(3/4): 587-601. DOI:  10.1007/s00704-015-1690-9.
[13] HRISTOV Y, OXLEY G, ŽAGAR M. Improvement of AEP predictions using diurnal CFD modelling with site-specific stability weightings provided from mesoscale simulation [J]. Journal of physics:conference series, 2014, 524: 012116. DOI:  10.1088/1742-6596/524/1/012116.
[14] 徐彬, 薛帅, 高厚磊, 等. 海上风电场及其关键技术发展现状与趋势 [J]. 发电技术, 2022, 43(2): 227-235. DOI:  10.12096/j.2096-4528.pgt.22031.

XU B, XUE S, GAO H L, et al. Development status and prospects of offshore wind farms and it's key technology [J]. Power generation technology, 2022, 43(2): 227-235. DOI:  10.12096/j.2096-4528.pgt.22031.
[15] SANZ RODRIGO J, CHÁVEZ ARROYO R A, MORIARTY P, et al. Mesoscale to microscale wind farm flow modeling and evaluation [J]. WIREs energy and environment, 2017, 6(2): e214. DOI:  10.1002/wene.214.
[16] ZHAO B, ZHANG B, SHI C X, et al. Comparison of the global energy cycle between Chinese reanalysis interim and ECMWF reanalysis [J]. Journal of meteorological research, 2019, 33(3): 563-575. DOI:  10.1007/s13351-019-8129-7.
[17] HUQ S, DE ROO F, RAASCH S, et al. Vertically nested LES for high-resolution simulation of the surface layer in PALM (5th ed.) [J]. Geoscientific model development, 2019, 12(6): 2523-2538. DOI:  10.5194/gmd-12-2523-2019.
[18] MARONGA B, BANZHAF S, BURMEISTER C, et al. Overview of the PALM model system 6.0 [J]. Geoscientific model development, 2020, 13(3): 1335-1372. DOI:  10.5194/gmd-13-1335-2020.
[19] DEARDORFF J W. Stratocumulus-capped mixed layers derived from a three-dimensional model [J]. Boundary-layer meteorology, 1980, 18(4): 495-527. DOI:  10.1007/BF00119502.
[20] SKAMAROCK W C, KLEMP J B, DUDHIA J, et al. A description of the advanced research WRF model version 4.1 [R]. Boulder: National Center for Atmospheric Research, 2019. DOI:  10.5065/1dfh-6p97.
[21] 杜梦蛟, 易侃, 文仁强, 等. WRF模式中不同物理参数化方案组合在中国近海风能资源评估中的适用性研究 [J]. 海洋预报, 2023, 40(1): 65-78. DOI:  10.11737/j.issn.1003-0239.2023.01.008.

DU M J, YI K, WEN R Q, et al. Study on the applicability of different combination of physical parameterization schemes of WRF model in assessing offshore wind energy resources of China [J]. Marine forecasts, 2023, 40(1): 65-78. DOI:  10.11737/j.issn.1003-0239.2023.01.008.