[1] LELIEVELD J, KLINGMÜLLER K, POZZER A, et al. Effects of fossil fuel and total anthropogenic emission removal on public health and climate [J]. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116(15): 7192-7197. DOI:  10.1073/pnas.1819989116.
[2] 张浩. 氢储能系统关键技术及发展前景展望 [J]. 国网技术学院学报, 2021, 24(2): 8-12. DOI:  10.3969/j.issn.1008-3162.2021.02.003.

ZHANG H. Key technologies and development prospect of hydrogen energy storage system [J]. Journal of Shandong Electric Power College, 2021, 24(2): 8-12. DOI:  10.3969/j.issn.1008-3162.2021.02.003.
[3] 姚若军, 高啸天. 氢能产业链及氢能发电利用技术现状及展望 [J]. 南方能源建设, 2021, 8(4): 9-15. DOI:  10.16516/j.gedi.issn2095-8676.2021.04.002.

YAO R J, GAO X T. Current situation and prospect of hydrogen energy industry chain and hydrogen power generation utilization technology [J]. Southern Energy Construction, 2021, 8(4): 9-15. DOI:  10.16516/j.gedi.issn2095-8676.2021.04.002.
[4] GAO L K, CUI X, SEWELL C D, et al. Recent advances in activating surface reconstruction for the high-efficiency oxygen evolution reaction [J]. Chemical Society Reviews, 2021, 50(15): 8428-8469. DOI:  10.1039/d0cs00962h.
[5] PAN Q W, WANG L. Recent perspectives on the structure and oxygen evolution activity for non-noble metal-based catalysts [J]. Journal of Power Sources, 2021, 485: 229335. DOI:  10.1016/j.jpowsour.2020.229335.
[6] 宋乃建, 郭明媛, 南皓雄, 等. 过渡金属基催化剂用于氧析出反应的研究进展 [J]. 储能科学与技术, 2021, 10(6): 1906-1917. DOI:  10.19799/j.cnki.2095-4239.2021.0441.

SONG N J, GUO M Y, NAN H X, et al. Recent advances in transition metal-based catalysts for oxygen evolution reaction [J]. Energy Storage Science and Technology, 2021, 10(6): 1906-1917. DOI:  10.19799/j.cnki.2095-4239.2021.0441.
[7] ZHANG Y C, HAN C D, GAO J, et al. NiCo-based electrocatalysts for the alkaline oxygen evolution reaction: a review [J]. ACS Catalysis, 2021, 11(20): 12485-12509. DOI:  10.1021/acscatal.1c03260.
[8] HAN L, DONG S J, WANG E K. Transition-Metal (Co, Ni, and Fe)-based electrocatalysts for the water oxidation reaction [J]. Advanced Materials, 2016, 28(42): 9266-9291. DOI:  10.1002/adma.201602270.
[9] FANG L, JIANG Z Q, XU H T, et al. Crystal-plane engineering of NiCo2O4 electrocatalysts towards efficient overall water splitting [J]. Journal of Catalysis, 2018, 357: 238-246. DOI:  10.1016/j.jcat.2017.11.017.
[10] LI Y G, HASIN P, WU Y Y. NixCo3-xO4 nanowire arrays for electrocatalytic oxygen evolution [J]. Advanced Materials, 2010, 22(17): 1926-1929. DOI:  10.1002/adma.200903896.
[11] ZHAO J, WANG X R, WANG X J, et al. Ultrathin porous nanosheet-assembled hollow cobalt nickel oxide microspheres with optimized compositions for efficient oxygen evolution reaction [J]. Inorganic Chemistry Frontiers, 2018, 5(8): 1886-1893. DOI:  10.1039/c8qi00333e.
[12] TROTOCHAUD L, RANNEY J K, WILLIAMS K N, et al. Solution-cast metal oxide thin film electrocatalysts for oxygen evolution [J]. Journal of the American Chemical Society, 2012, 134(41): 17253-17261. DOI:  10.1021/ja307507a.
[13] WANG H Y, HSU Y Y, CHEN R, et al. Ni3+-Induced formation of active NiOOH on the spinel Ni-Co oxide surface for efficient oxygen evolution reaction [J]. Advanced Energy Materials, 2015, 5(10): 1500091. DOI:  10.1002/aenm.201500091.
[14] JIANG J, ZHANG A L, LI L L, et al. Nickel-cobalt layered double hydroxide nanosheets as high-performance electrocatalyst for oxygen evolution reaction [J]. Journal of Power Sources, 2015, 278: 445-451. DOI:  10.1016/j.jpowsour.2014.12.085.
[15] XIANG K, GUO J, XU J, et al. Surface sulfurization of NiCo-layered double hydroxide nanosheets enable superior and durable oxygen evolution electrocatalysis [J]. ACS Applied Energy Materials, 2018, 1(8): 4040-4049. DOI:  10.1021/acsaem.8b00723.
[16] YU C, LIU Z B, HAN X T, et al. NiCo-layered double hydroxides vertically assembled on carbon fiber papers as binder-free high-active electrocatalysts for water oxidation [J]. Carbon, 2016, 110: 1-7. DOI:  10.1016/j.carbon.2016.08.020.
[17] THONGMEE S, PANG H L, YI J B, et al. Unique nanostructures in NiCo alloy nanowires [J]. Acta Materialia, 2009, 57(8): 2482-2487. DOI:  10.1016/j.actamat.2009.02.006.
[18] CHENG M Z, WEN M, ZHOU S Q, et al. Solvothermal synthesis of NiCo alloy icosahedral nanocrystals [J]. Inorganic Chemistry, 2012, 51(3): 1495-1500. DOI:  10.1021/ic201763j.
[19] UNG D, VIAU G, FIÉVET-VINCENT F, et al. Magnetic nanoparticles with hybrid shape [J]. Progress in Solid State Chemistry, 2005, 33(2/4): 137-145. DOI:  10.1016/j.progsolidstchem.2005.11.025.
[20] RAULA M, RASHID H, LAI S M, et al. Solvent-adoptable polymer Ni/NiCo alloy nanochains: highly active and versatile catalysts for various organic reactions in both aqueous and nonaqueous media [J]. ACS Applied Materials & Interfaces, 2012, 4(2): 878-889. DOI:  10.1021/am201549a.
[21] FU Y, YU H Y, JIANG C, et al. NiCo alloy nanoparticles decorated on N-doped carbon nanofibers as highly active and durable oxygen electrocatalyst [J]. Advanced Functional Materials, 2018, 28(9): 1705094. DOI:  10.1002/adfm.201705094.
[22] GAO X R, YU Y, LIANG Q R, et al. Surface nitridation of nickel-cobalt alloy nanocactoids raises the performance of water oxidation and splitting [J]. Applied Catalysis B:Environmental, 2020, 270: 118889. DOI:  10.1016/j.apcatb.2020.118889.
[23] WANG Y Q, ZHANG B H, PAN W, et al. 3D porous nickel-cobalt nitrides supported on nickel foam as efficient electrocatalysts for overall water splitting [J]. ChemSusChem, 2017, 10(21): 4170-4177. DOI:  10.1002/cssc.201701456.
[24] LIU Z H, TAN H, LIU D B, et al. Promotion of overall water splitting activity over a wide pH range by interfacial electrical effects of metallic NiCo-nitrides nanoparticle/NiCo2O4 nanoflake/graphite fibers [J]. Advanced Science, 2019, 6(5): 1801829. DOI:  10.1002/advs.201801829.
[25] YOU B, JIANG N, SHENG M L, et al. High-performance overall water splitting electrocatalysts derived from cobalt-based metal–organic frameworks [J]. Chemistry of Materials, 2015, 27(22): 7636-7642. DOI:  10.1021/acs.chemmater.5b02877.
[26] ANANTHARAJ S, EDE S R, SAKTHIKUMAR K, et al. Recent trends and perspectives in electrochemical water splitting with an emphasis on sulfide, selenide, and phosphide catalysts of Fe, Co, and Ni: a review [J]. ACS Catalysis, 2016, 6(12): 8069-8097. DOI:  10.1021/acscatal.6b02479.
[27] HE P L, YU X Y, LOU X W. Carbon-incorporated nickel-cobalt mixed metal phosphide nanoboxes with enhanced electrocatalytic activity for oxygen evolution [J]. Angewandte Chemie International Edition, 2017, 56(14): 3897-3900. DOI:  10.1002/anie.201612635.
[28] DU C, YANG L, YANG F L, et al. Nest-like NiCoP for highly efficient overall water splitting [J]. ACS Catalysis, 2017, 7(6): 4131-4137. DOI:  10.1021/acscatal.7b00662.
[29] WANG D, TIAN L Y, HUANG J Y, et al. One for two" strategy to prepare MOF-derived NiCo2S4 nanorods grown on carbon cloth for high-performance asymmetric supercapacitors and efficient oxygen evolution reaction [J]. Electrochimica Acta, 2020, 334: 135636. DOI:  10.1016/j.electacta.2020.135636.
[30] ZHANG R X, CHENG S Q, LI N, et al. N, S-codoped graphene loaded Ni-Co bimetal sulfides for enhanced oxygen evolution activity [J]. Applied Surface Science, 2020, 503: 144146. DOI:  10.1016/j.apsusc.2019.144146.
[31] HU H S, LI Y, DENG G, et al. The importance of the iron valence state in NiCoFe nanosheet array catalysts for the oxygen evolution reaction [J]. Inorganic Chemistry Frontiers, 2021, 8(3): 766-776. DOI:  10.1039/d0qi01179g.
[32] HUANG Y, ZHANG S L, LU X F, et al. Trimetallic spinel NiCo2-xFexO4nanoboxes for highly efficient electrocatalytic oxygen evolution [J]. Angewandte Chemie International Edition, 2021, 60(21): 11841-11846. DOI:  10.1002/anie.202103058.
[33] LI C, GAO Y T, XIA X F, et al. Hierarchically structured two-dimensional bimetallic CoNi-hexaaminobenzene coordination polymers derived from Co(OH)2 for enhanced oxygen evolution catalysis [J]. Small, 2020, 16(8): 1907043. DOI:  10.1002/smll.201907043.