[1] Energy & Climate. Net zero emissions race [EB/OL]. (2022-12-01)[2022-12-29]. https://eciu.net/netzerotracker.
[2] 习近平. 继往开来, 开启全球应对气候变化新征程−在气候雄心峰会上的讲话 [J]. 中国环境监察, 2020(12): 9.

XI J P. Building on past achievements and launching a new journey for global climate actions [J]. China environment supervision, 2020(12): 9.
[3] 国家发展改革委, 国家能源局. 氢能产业发展中长期规划(2021-2035年) [R/OL]. (2022-03-23)[2022-12-29]. http://zfxxgk.nea.gov.cn/1310525630_16479984022991n.pdf.

National Development and Reform Commission, National Energy Administration. Medium and long-term planning for the development of hydrogen energy industry (2021-2035) [R/OL]. (2022-03-23)[2022-12-29]. http://zfxxgk.nea.gov.cn/1310525630_16479984022991n.pdf.
[4] LIU W, WAN Y M, XIONG Y L, et al. Green hydrogen standard in China: standard and evaluation of low-carbon hydrogen, clean hydrogen, and renewable hydrogen [J]. International journal of hydrogen energy, 2022, 47(58): 24584-24591. DOI:  10.1016/J.IJHYDENE.2021.10.193.
[5] DABAR O A, AWALEH M O, WABERI M M, et al. Wind resource assessment and techno-economic analysis of wind energy and green hydrogen production in the Republic of Djibouti [J]. Energy reports, 2022, 8: 8996-9016. DOI:  10.1016/j.egyr.2022.07.013.
[6] NOGRADY B. China launches world's largest carbon market: but is it ambitious enough? [J]. Nature, 2021, 595(7869): 637-637. DOI:  10.1038/d41586-021-01989-7.
[7] 王彦哲, 欧训民, 周胜. 基于学习曲线的中国未来制氢成本趋势研究 [J]. 气候变化研究进展, 2022, 18(3): 283-293. DOI:  10.12006/j.issn.1673-1719.2021.248.

WANG Y Z, OU X M, ZHOU S. Future cost trend of hydrogen production in China based on learning curve [J]. Climate change research, 2022, 18(3): 283-293. DOI:  10.12006/j.issn.1673-1719.2021.248.
[8] 刘玮, 万燕鸣, 熊亚林, 等. 碳中和目标下电解水制氢关键技术及价格平准化分析 [J]. 电工技术学报, 2022, 37(11): 2888-2896. DOI:  10.19595/j.cnki.1000-6753.tces.210658.

LIU W, WAN Y M, XIONG Y L, et al. Key technology of water electrolysis and levelized cost of hydrogen analysis under carbon neutral vision [J]. Transactions of China electrotechnical society, 2022, 37(11): 2888-2896. DOI:  10.19595/j.cnki.1000-6753.tces.210658.
[9] 许传博, 赵云灏, 王晓晨, 等. 碳中和愿景下考虑电氢耦合的风光场站氢储能优化配置 [J]. 电力建设, 2022, 43(1): 10-18. DOI:  10.12204/j.issn.1000-7229.2022.01.002.

XU C B, ZHAO Y H, WANG X C, et al. Optimal configuration of hydrogen energy storage for wind and solar power stations considering electricity-hydrogen coupling under carbon neutrality vision [J]. Electric power construction, 2022, 43(1): 10-18. DOI:  10.12204/j.issn.1000-7229.2022.01.002.
[10] 顾玖, 王晨磊, 解大. 电力市场环境下的电-氢一体化站优化运行 [J]. 电力科学与技术学报, 2022, 37(1): 130-139. DOI:  10.19781/j.issn.1673-9140.2022.01.016.

GU J, WANG C L, XIE D. Research on optimal operation of electricity-hydrogen integrated station in electricity market environment [J]. Journal of electric power science and technology, 2022, 37(1): 130-139. DOI:  10.19781/j.issn.1673-9140.2022.01.016.
[11] DAI H C, DAI H M. Green hydrogen production based on the co-combustion of wood biomass and porous media [J]. Applied energy, 2022, 324: 119779. DOI:  10.1016/j.apenergy.2022.119779.
[12] 中国氢能联盟. 中国氢能源及燃料电池产业白皮书2020 [R]. 北京: 中国氢能联盟, 2021.

China Hydrogen Alliance. White paper of hydrogen energy and fuel cell industry in China (2020) [R]. Beijing: China Hydrogen Alliance, 2021.
[13] 曹蕃, 郭婷婷, 陈坤洋, 等. 风电耦合制氢技术进展与发展前景 [J]. 中国电机工程学报, 2021, 41(6): 2187-2200. DOI:  10.13334/j.0258-8013.pcsee.200452.

CAO F, GUO T T, CHEN K Y, et al. Progress and development prospect of coupled wind and hydrogen systems [J]. Proceedings of the CSEE, 2021, 41(6): 2187-2200. DOI:  10.13334/j.0258-8013.pcsee.200452.
[14] SCHROTENBOER A H, VEENSTRA A A T, UIT HET BROEK M A J, et al. A green hydrogen energy system: optimal control strategies for integrated hydrogen storage and power generation with wind energy [J]. Renewable and sustainable energy reviews, 2022, 168: 112744. DOI:  10.1016/j.rser.2022.112744.
[15] 吉斌, 孙绘, 梁肖, 等. 面向“双碳”目标的碳电市场融合交易探讨 [J]. 华电技术, 2021, 43(6): 33-40. DOI:  10.3969/j.issn.1674-1951.2021.06.004.

JI B, SUN H, LIANG X, et al. Discussion on convergent trading of the carbon and electricity market on the path to carbon peak and carbon neutrality [J]. Huadian technology, 2021, 43(6): 33-40. DOI:  10.3969/j.issn.1674-1951.2021.06.004.
[16] 帅云峰, 周春蕾, 李梦, 等. 美国碳市场与电力市场耦合机制研究−以区域温室气体减排行动(RGGI)为例 [J]. 电力建设, 2018, 39(7): 41-47. DOI:  10.3969/j.issn.1000-7229.2018.07.005.

SHUAI Y F, ZHOU C L, LI M, et al. Coupling mechanism of U. S. carbon market and electricity market: a case study of regional greenhouse gas initiative [J]. Electric power construction, 2018, 39(7): 41-47. DOI:  10.3969/j.issn.1000-7229.2018.07.005.
[17] 薛贵元, 吴晨, 王浩然, 等. “双碳”目标下碳市场与电力市场协同发展机制分析 [J]. 电力科学与工程, 2022, 38(7): 1-7. DOI:  10.3969/j.ISSN.1672-0792.2022.07.001.

XUE G Y, WU C, WANG H R, et al. Coordinated development mechanism of carbon market and power market under carbon peak and neutrality goals [J]. Electric power science and engineering, 2022, 38(7): 1-7. DOI:  10.3969/j.ISSN.1672-0792.2022.07.001.
[18] 冯昌森, 谢方锐, 文福拴, 等. 基于智能合约的绿证和碳联合交易市场的设计与实现 [J]. 电力系统自动化, 2021, 45(23): 1-11. DOI:  10.7500/AEPS20200925010.

FENG C S, XIE F R, WEN F S, et al. Design and implementation of joint trading market for green power certificate and carbon based on smart contract [J]. Automation of electric power systems, 2021, 45(23): 1-11. DOI:  10.7500/AEPS20200925010.
[19] FENG T T, LI R, ZHANG H M, et al. Induction mechanism and optimization of tradable green certificates and carbon emission trading acting on electricity market in China [J]. Resources, conservation and recycling, 2021, 169: 105487. DOI:  10.1016/j.resconrec.2021.105487.
[20] 王帮灿, 刘洋, 崔雪. 基于电碳联动的火电企业补偿机制研究 [J]. 电测与仪表, 2019, 56(20): 65-70. DOI:  10.19753/j.issn1001-1390.2019.020.011.

WANG B C, LIU Y, CUI X. Research on compensation mechanism of thermal power enterprises based on electricity-carbon linkage [J]. Electrical measurement & instrumentation, 2019, 56(20): 65-70. DOI:  10.19753/j.issn1001-1390.2019.020.011.
[21] 刘洋, 崔雪, 谢雄, 等. 电碳联动环境下考虑社会效益最优的发电权交易研究 [J]. 电测与仪表, 2020, 57(13): 112-117,148. DOI:  10.19753/j.issn1001-1390.2020.13.018.

LIU Y, CUI X, XIE X, et al. Research on the trading of clean energy power generation right with the best social benefit under the electric-carbon linkage environment [J]. Electrical measurement & instrumentation, 2020, 57(13): 112-117,148. DOI:  10.19753/j.issn1001-1390.2020.13.018.
[22] 赵麟, 李亚鹏, 靳晓雨, 等. 考虑CCER机制的碳-电耦合市场中水火电协同竞价模型 [J/OL]. 电力系统自动化 : 1-16 (2022-10-29)[2022-12-29]. http://kns.cnki.net/kcms/detail/32.1180.TP.20221027.1803.010.html.

ZHAO L, LI Y P, JIN X Y, et al. Coordinated bidding model of hydropower-thermal power in carbon-electricity coupling market considering CCER mechanism [J/OL]. Automation of electric power systems: 1-16. (2022-10-29)[2022-12-29]. http://kns.cnki.net/kcms/detail/32.1180.TP.20221027.1803.010.html.
[23] SONG X H, HAN J J, ZHANG L, et al. Impacts of renewable portfolio standards on multi-market coupling trading of renewable energy in China: a scenario-based system dynamics model [J]. Energy policy, 2021, 159: 112647. DOI:  10.1016/j.enpol.2021.112647.
[24] 张晗, 韩冬, 刘坦, 等. 碳中和背景下分布式光伏渗透与售电市场耦合机制分析 [J/OL]. 上海交通大学学报: 1-9 (2022-07-28)[2022-12-29]. https: //doi. org/10.16183/j. cnki. jsjtu. 2021.514.

ZHANG H, HAN D, LIU T, et al. Analysis of market coupling mechanism between distributed photovoltaic penetration and electricity market under the background of carbon neutrality [J/OL]. Journal of Shanghai Jiao Tong University: 1-9 (2022-07-28)[2022-12-29]. https://doi.org/10.16183/j.cnki.jsjtu.2021.514.
[25] WANG L Z, JIAO S C, XIE Y, et al. Two-way dynamic pricing mechanism of hydrogen filling stations in electric-hydrogen coupling system enhanced by blockchain [J]. Energy, 2022, 239: 122194. DOI:  10.1016/j.energy.2021.122194.
[26] LIU H X, WANG Y Y, XU F F, et al. P2H modeling and operation in the microgrid under coupled electricity-hydrogen markets [J]. Frontiers in energy research, 2021, 9: 812767. DOI:  10.3389/FENRG.2021.812767.
[27] 万文轩, 冀亚男, 尹力, 等. 碳交易在综合能源系统规划与运行中的应用及展望 [J]. 电测与仪表, 2021, 58(11): 39-48. DOI:  10.19753/j.issn1001-1390.2021.11.006.

WAN W X, JI Y N, YIN L, et al. Application and prospect of carbon trading in the planning and operation of integrated energy system [J]. Electrical measurement & instrumentation, 2021, 58(11): 39-48. DOI:  10.19753/j.issn1001-1390.2021.11.006.
[28] 廖远旭, 董英瑞, 孙翔, 等. 可再生能源制氢综合能源管理平台研究 [J]. 南方能源建设, 2022, 9(4): 47-52. DOI:  10.16516/j.gedi.issn2095-8676.2022.04.006.

LIAO Y X, DONG Y R, SUN X, et al. Research on comprehensive energy management platform for hydrogen production from renewable energy [J]. Southern energy construction, 2022, 9(4): 47-52. DOI:  10.16516/j.gedi.issn2095-8676.2022.04.006.
[29] PENG G B, XIANG Y. CO2 Emission coupled power generation mix evolution: a system dynamics approach [J]. Energy reports, 2022, 8(Suppl.10): 597-604. DOI:  10.1016/j.egyr.2022.05.225.
[30] DING Y T, CHEN S, ZHENG Y L, et al. Resilience assessment of China's natural gas system under supply shortages: a system dynamics approach [J]. Energy, 2022, 247: 123518. DOI:  10.1016/j.energy.2022.123518.
[31] 曹先磊, 程毅明, 吴伟光. 碳中和目标背景下CCER林业碳汇项目开发优先序研究 [J]. 统计与信息论坛, 2022, 37(5): 52-63. DOI:  10.3969/j.issn.1007-3116.2022.05.005.

CAO X L, CHENG Y M, WU W G. Study on the priorities for the development of CCER forestry carbon sink projects under the context of carbon neutrality goals [J]. Journal of statistics and information, 2022, 37(5): 52-63. DOI:  10.3969/j.issn.1007-3116.2022.05.005.
[32] WU Q Y. Price and scale effects of China's carbon emission trading system pilots on emission reduction [J]. Journal of environmental management, 2022, 314: 115054. DOI:  10.1016/j.jenvman.2022.115054.
[33] QI S Z, CHENG S H, TAN X J, et al. Predicting China's carbon price based on a multi-scale integrated model [J]. Applied energy, 2022, 324: 119784. DOI:  10.1016/j.apenergy.2022.119784.
[34] WANG M G, ZHU M R, TIAN L X. A novel framework for carbon price forecasting with uncertainties [J]. Energy economics, 2022, 112: 106162. DOI:  10.1016/j.eneco.2022.106162.
[35] 许传博, 刘建国. 氢储能在我国新型电力系统中的应用价值、挑战及展望 [J]. 中国工程科学, 2022, 24(3): 89-99. DOI:  10.15302/J-SSCAE-2022.03.010.

XU C B, LIU J G. Hydrogen energy storage in China's new-type power system: application value, challenges, and prospects [J]. Strategic study of CAE, 2022, 24(3): 89-99. DOI:  10.15302/J-SSCAE-2022.03.010.
[36] 潘光胜, 顾伟, 张会岩, 等. 面向高比例可再生能源消纳的电氢能源系统 [J]. 电力系统自动化, 2020, 44(23): 1-10. DOI:  10.7500/AEPS20200202003.

PAN G S, GU W, ZHANG H Y, et al. Electricity and Hydrogen energy system towards accomodation of high proportion of renewable energy [J]. Automation of electric power systems, 2020, 44(23): 1-10. DOI:  10.7500/AEPS20200202003.
[37] 李爽, 史翊翔, 蔡宁生. 面向能源转型的化石能源与可再生能源制氢技术进展 [J]. 清华大学学报(自然科学版), 2022, 62(4): 655-662. DOI:  10.16511/j.cnki.qhdxxb.2022.25.039.

LI S, SHI Y X, CAI N S. Progress in hydrogen production from fossil fuels and renewable energy sources for the green energy revolution [J]. Journal of Tsinghua University (science and technology), 2022, 62(4): 655-662. DOI:  10.16511/j.cnki.qhdxxb.2022.25.039.
[38] 岳铂雄, 熊厚博, 郭亦宗, 等. 碳交易机制推动电力行业低碳转型 [J]. 电气自动化, 2022, 44(4): 1-3,7. DOI:  10.3969/j.issn.1000-3886.2022.04.001.

YUE B X, XIONG H B, GUO Y Z, et al. Carbon transaction mechanism promotes low-carbon transformation of power industry [J]. Electrical automation, 2022, 44(4): 1-3,7. DOI:  10.3969/j.issn.1000-3886.2022.04.001.
[39] WANG W J, ZHAO X J, ZHANG Q Q, et al. Auction mechanism design of the Chinese national carbon market for carbon neutralization [J]. Chinese journal of population, resources and environment, 2022, 20(2): 115-124. DOI:  10.1016/j.cjpre.2022.06.002.
[40] 美国环保协会. 电力行业参与欧盟碳排放交易体系经验与教训 [R/OL]. (2022-12-22)[2022-12-29]. http://www.cet.net.cn/html/zl/bg/2020/0521/417.html.

Environmental Defense Fund. Experience and lessons from the participation of the power industry in the EU carbon emissions trading system [R/OL]. (2022-12-22)[2022-12-29]. http://www.cet.net.cn/html/zl/bg/2020/0521/417.html.
[41] YAN J C. The impact of climate policy on fossil fuel consumption: evidence from the regional greenhouse gas initiative (RGGI) [J]. Energy economics, 2021, 100: 105333. DOI:  10.1016/j.eneco.2021.105333.