[1] 钟财富. 国内外分布式燃料电池发电应用现状及前景分析 [J]. 中国能源, 2021, 43(2): 34-37,73. DOI:  10.3969/j.issn.1003-2355.2021.02.006.

ZHONG C F. Application status and prospect analysis of distributed fuel cell power generation at home and abroad [J]. China Energy, 2021, 43(2): 34-37,73. DOI:  10.3969/j.issn.1003-2355.2021.02.006.
[2] 向楠, 李鹏, 张雪芹, 等. 国内分布式能源发展现状与应用前景 [J]. 科技资讯, 2019, 17(18): 38-44. DOI:  10.16661/j.cnki.1672-3791.2019.18.038.

XIANG N, LI P, ZHANG X Q, et al. Development status and application prospects of distributed energy in China [J]. Science & Technology Information, 2019, 17(18): 38-44. DOI:  10.16661/j.cnki.1672-3791.2019.18.038.
[3] 廖文俊, 倪蕾蕾, 季文姣, 等. 分布式能源用燃料电池的应用及发展前景 [J]. 装备机械, 2017(3): 58-64. doi:  10.3969/j.issn.1662-0555.2017.03.015

LIAO W J, NI L L, JI W J, et al. Application and development prospect of fuel cells for distributed energy [J]. Equipment Machinery, 2017(3): 58-64. doi:  10.3969/j.issn.1662-0555.2017.03.015
[4] 宋鹏飞, 单彤文, 李又武, 等. 以天然气为原料的燃料电池分布式供能技术路径研究 [J]. 现代化工, 2020, 40(9): 14-19. DOI:  10.16606/j.cnki.issn0253-4320.2020.09.004.

SONG P F, SHAN T W, LI Y W, et al. Founding paths to supply energy in a distributed way by fuel cell with natural gas as raw materials [J]. Modern Chemical Industry, 2020, 40(9): 14-19. DOI:  10.16606/j.cnki.issn0253-4320.2020.09.004.
[5] 孙兴进, 朱新坚, 曹广益. 熔融碳酸盐燃料电池(MCFC)发电系统进展 [J]. 电源技术, 2001, 25(4): 303-307. DOI:  10.3969/j.issn.1002-087X.2001.04.015.

SUN X J, ZHU X J, CAO G Y. Development of molten-carbonate fuel-cell power system [J]. Chinese Journal of Power Sources, 2001, 25(4): 303-307. DOI:  10.3969/j.issn.1002-087X.2001.04.015.
[6] 曹静, 王小博, 孙翔, 等. 基于固体氧化物燃料电池的高效清洁发电系统 [J]. 南方能源建设, 2020, 7(2): 28-34. DOI:  10.16516/j.gedi.issn2095-8676.2020.02.004.

CAO J, WANG X B, SUN X, et al. High-efficiency clean power generation system based on solid oxide fuel cell [J]. Southern Energy Construction, 2020, 7(2): 28-34. DOI:  10.16516/j.gedi.issn2095-8676.2020.02.004.
[7] 李琼慧, 叶小宁, 胡静, 等. 分布式能源规模化发展前景及关键问题 [J]. 分布式能源, 2020, 5(2): 1-7. DOI:  10.16513/j.2096-2185.DE.2003005.

LI Q H, YE X N, HU J, et al. Outlook and critical issues of large-scale development on distributed energy resources [J]. Distributed Energy, 2020, 5(2): 1-7. DOI:  10.16513/j.2096-2185.DE.2003005.
[8] 刘应都, 郭红霞, 欧阳晓平. 氢燃料电池技术发展现状及未来展望 [J]. 中国工程科学, 2021, 23(4): 162-171. DOI:  10.15302/J-SSCAE-2021.04.019.

LIU Y D, GUO H X, OUYANG X P. Development status and future prospects of hydrogen fuel cell technology [J]. Strategic Study of Chinese Academy of Engineering, 2021, 23(4): 162-171. DOI:  10.15302/J-SSCAE-2021.04.019.
[9] 衣宝廉. 燃料电池——原理·技术·应用 [M]. 北京: 化学工业出版社, 2003.

YI B L. Fuel cell: principle·technology·application [M]. Beijing: Chemical Industry Press, 2003.
[10] M. 哈希姆·内里, 王才胜. 燃料电池的建模与控制及其在分布式发电中的应用 [M]. 赵仁德, 译. 北京: 机械工业出版社, 2019.

NEHRIR M H, WANG C S. Modeling and control of fuel cells: distributed generation applications [M]. ZHAO R D, trans. Beijing: Machinery Industry Press, 2019.
[11] 王洪建, 许世森, 程建, 等. 熔融碳酸盐燃料电池发电系统研究进展与展望 [J]. 热力发电, 2017, 46(5): 8-13. DOI:  10.3969/j.issn.1002-3364.2017.05.008.

WANG H J, XU S S, CHENG J, et al. Progress and prospects of molten carbonate fuel cell system [J]. Thermal Power Generation, 2017, 46(5): 8-13. DOI:  10.3969/j.issn.1002-3364.2017.05.008.
[12] DOHERTY W, REYNOLDS A, KENNEDY D. Computer simulation of a biomass gasification-solid oxide fuel cell power system using aspen plus [J]. Energy, 2010, 35(12): 4545-4555. DOI:  10.1016/j.energy.2010.04.051.
[13] PIRKANDI J, GHASSEMI M, HAMEDI M H, et al. Electrochemical and thermodynamic modeling of a CHP system using tubular solid oxide fuel cell (SOFC-CHP) [J]. Journal of Cleaner Production, 2012, 29-30: 151-162. DOI:  10.1016/j.jclepro.2012.01.038.
[14] GALVAGNO A, PRESTIPINO M, ZAFARANA G, et al. Analysis of an integrated agro-waste gasification and 120 kW SOFC CHP system: modeling and experimental investigation [J]. Energy Procedia, 2016, 101: 528-535. DOI:  10.1016/j.egypro.2016.11.067.
[15] MEHRPOOYA M, SADEGHZADEH M, RAHIMI A, et al. Technical performance analysis of a combined cooling heating and power (CCHP) system based on solid oxide fuel cell (SOFC) technology-A building application [J]. Energy Conversion and Management, 2019, 198: 111767. DOI:  10.1016/j.enconman.2019.06.078.
[16] MEHRPOOYA M, KHODAYARI R, ALI MOOSAVIAN S M, et al. Optimal design of molten carbonate fuel cell combined cycle power plant and thermophotovoltaic system [J]. Energy Conversion and Management, 2020, 221: 113177. DOI:  10.1016/j.enconman.2020.113177.
[17] JARCHLOUEI M A, CHITSAZ A, MAHMOUDI S M S, et al. Gibbs energy minimization using Lagrange method of undetermined multipliers for electrochemical and thermodynamic modeling of a MCFC with internal steam reforming [J]. Energy Conversion and Management, 2021, 228: 113594. DOI:  10.1016/j.enconman.2020.113594.