[1] 刘安仓, 林楚伟, 江永. 新形势下的煤电企业转型思路探索 [J]. 中国电力企业管理, 2021(10): 78-79.

LIU A C, LIN C W, JIANG Y, et al. Exploration of transformation ideas of coal power enterprises under the new situation [J]. China Power Enterprise Management, 2021(10): 78-79.
[2] 张勋奎. 以新能源为主体的新型电力系统发展路线图 [J]. 分布式能源, 2021, 6(6): 1-8. DOI:  10.16513/j.2096-2185.DE.2106606.

ZHANG X K. A roadmap for developing a new power system with new energy as the main body [J]. Distributed Energy, 2021, 6(6): 1-8. DOI:  10.16513/j.2096-2185.DE.2106606.
[3] 孙杨. 基于储能的燃煤电站运行灵活性优化及其热力学评价 [D]. 北京: 华北电力大学(北京), 2020. DOI: 10.27140/d.cnki.ghbbu.2020.000084.

SUN Y. Enhancing the operational flexibility of coal-fired power plants via energy storage and the thermodynamic evaluation thereof [D]. Beijing: North China Electric Power University (Beijing), 2020. DOI: 10.27140/d.cnki.ghbbu.2020.000084.
[4] 吴珊, 边晓燕, 张菁娴, 等. 面向新型电力系统灵活性提升的国内外辅助服务市场研究综述 [J/OL]. 电工技术学报: 1-17. (2022-03-08) [2022-07-21]. DOI: 10.19595/j.cnki.1000-6753.tces.211730. https://www.cnki.com.cn/Article/CJFDTOTAL-DGJS20220302006.htm

WU S, BIAN X Y, ZHANG J X, et al. A review of domestic and foreign ancillary services market for improving the flexibility of new power system [J]. Transactions of China Electrotechnical Society: 1-17. (2022-03-08) [2022-07-21]. DOI: 10.19595/j. cnki. 1000-6753.tces.211730. https://www.cnki.com.cn/Article/CJFDTOTAL-DGJS20220302006.htm
[5] 徐静颖, 卓建坤, 姚强. 燃煤有机污染物生成排放特性与采样方法研究进展 [J]. 化工学报, 2019, 70(8): 2823-2834. DOI:  10.11949/0438-1157.20190287.

XU J Y, ZHUO J K, YAO Q. Research progress on formation, emission characteristics and sampling methods of organic compounds from coal combustion [J]. CIESC Jorunal, 2019, 70(8): 2823-2834. DOI:  10.11949/0438-1157.20190287.
[6] 姜延灿, 邓彤天, 张颖, 等. 600 MW火电机组低负荷调峰的经济运行方式分析 [J]. 汽轮机技术, 2015(1): 61-64. DOI:  10.3969/j.issn.1001-5884.2015.01.018.

JIANG Y C, DENG T T, ZHANG Y, et al. Analysis on economic operation mode of 600 MW fossil-fired generating during peak shaving low load operation [J]. Turbine Technology, 2015(1): 61-64. DOI:  10.3969/j.issn.1001-5884.2015.01.018.
[7] ZHU J, ZHANG X, CHEN W, et al. Electrostatic precipitation of fine particles with a bipolar pre-charger [J]. Journal of Electrostatics, 2010, 68(2): 174-178. DOI:  10.1016/j.elstat.2009.12.005.
[8] 武宝会, 李帅英, 牛国平, 等. 燃煤机组烟气污染物协同脱除技术及应用 [J]. 热力发电, 2017, 46(11): 103-107. DOI:  10.3969/j.issn.1002-3364.2017.11.103.

WU B H, LI S Y, NIU G P, et al. Synergistic removal technologies for flue gas pollutants and their engineering applications in coal-fired units [J]. Thermal Power Generation, 2017, 46(11): 103-107. DOI:  10.3969/j.issn.1002-3364.2017.11.103.
[9] WANG X, CHANG J C, XU C Y, et al. Collection and charging charac teristics of particles in an electrostatic precipitator with a wet membrane collecting electrode [J]. Journal of Electrostatics, 2016, 83: 28-34. DOI:  10.1016/j.elstat.2016.07.007.
[10] 张双平, 李冰心, 赵凯, 等. 660 MW机组升负荷对脱硝及除尘影响研究 [J]. 工程热物理学报, 2017, 38(6): 1144-1149.

ZHANG S P, LI B X, ZHAO K, et al. Simulation on the influence of a 660 MW unit load-up processes on denitrification and particle removal [J]. Journal of Engineering Thermophysics, 2017, 38(6): 1144-1149.
[11] 董玉亮, 袁家海, 马丽荣. 面向灵活性发电的燃煤机组大气排放特性分析 [J]. 发电技术, 2018, 39(5): 425-432. DOI:  10.12096/j.2096-4528.pgt.2018.065.

DONG Y L, YUAN J H, MA L R. Air emissions characteristics of coal-fired power unit for flexibility generation [J]. Power Generation Technology, 2018, 39(5): 425-432. DOI:  10.12096/j.2096-4528.pgt.2018.065.
[12] 洪方明. 中小型循环流化床锅炉SO2超低排放技术研究及应用 [J]. 电力学报, 2020, 35(1): 82-90. DOI:  10.13357/j.dlxb.2020.013.

HONG F M. Research and application of SO2 ultra-low emission technique for small and medium circulating fluidized bed boiler [J]. Journal of Electric Power, 2020, 35(1): 82-90. DOI:  10.13357/j.dlxb.2020.013.
[13] 李文华, 吴贤豪, 陈彪, 等. 超低排放燃煤机组SO3和NH3生成及迁移规律研究 [J]. 浙江电力, 2021, 40(8): 91-95. DOI:  10.19585/j.zjdl.202108014.

LI W H, WU X H, CHEN B, et al. Research on the formation and migration characteristics of SO3 and NH3 in ultra-low emission coal-fired units [J]. Zhejiang Electric Power, 2021, 40(8): 91-95. DOI:  10.19585/j.zjdl.202108014.
[14] 史晓宏, 刘俊, 廖海燕, 等. 燃煤电厂烟气中挥发性有机物的分布规律及排放特性研究 [J]. 环境污染与防治, 2021, 43(4): 405-410. DOI:  10.15985/j.cnki.1001-3865.2021.04.001.

SHI X H, LIU J, LIAO H Y, et al. Study on the distribution and emission characteristics of volatile organic pollutants in the flue gas from coal-fired power plants [J]. Environmental Pollution and Control, 2021, 43(4): 405-410. DOI:  10.15985/j.cnki.1001-3865.2021.04.001.
[15] 左朋莱, 王晨龙, 佟莉, 等. 小型燃煤机组烟气重金属排放特征研究 [J]. 环境科学研究, 2020, 33(11): 2599-2604. DOI:  10.13198/j.issn.1001-6929.2020.06.07.

ZUO P L, WANG C L, TONG L, et al. Emission characteristics of heavy metal in flue gas of small coal-fired units [J]. Research of Environmental Sciences, 2020, 33(11): 2599-2604. DOI:  10.13198/j.issn.1001-6929.2020.06.07.
[16] 张翼, 叶云云, 顾永正, 等. 1 000 MW超超临界燃煤机组汞排放特征 [J]. 中国电机工程学报, 2021.

ZHANG Y, YE Y Y, GU Y Z, et al. Mercury emission characteristics of 1 000 MW ultra supercritical coal-fired units [J]. Chinese Journal of Electrical Engineering, 2021.
[17] 孟磊. 超低排放燃煤火电机组汞排放特性研究 [J]. 中国环保产业, 2019(5): 41-44. DOI:  10.3969/j.issn.1006-5377.2019.05.013.

MENG L. Study on mercury emission characteristic of ultra-low emission coal-fired power generator set [J]. China Environmental Protection Industry, 2019(5): 41-44. DOI:  10.3969/j.issn.1006-5377.2019.05.013.
[18] 王翔, 王述浩, 段璐, 等. 相变凝聚器内湿烟气核化特性模拟研究 [J]. 中国电机工程学报, 2020, 40(2): 574-582. DOI:  10.13334/j.0258-8013.pcsee.190034.

WANG X, WANG S H, DUAN L, et al. Nucleation characteristics simulation of wet flue gas in phase-change agglomerator [J]. Proceedings of the CSEE, 2020, 40(2): 574-582. DOI:  10.13334/j.0258-8013.pcsee.190034.
[19] 翁卫国, 周灿, 王丁振. 1 000 MW燃煤机组变负荷条件下颗粒物排放特性研究 [J]. 能源工程, 2018(2): 1-6. DOI:  10.16189/j.cnki.nygc.2018.02.001.

WENG W G, ZHOU C, WANG D Z. Study on particle emission in a 1 000 MW coal-fired unit under varying loads [J]. Energy Engineering, 2018(2): 1-6. DOI:  10.16189/j.cnki.nygc.2018.02.001.
[20] 李洋, 罗林, 吴建群, 等. 1 000 MW燃煤机组负荷变化对颗粒物排放特性影响 [J]. 洁净煤技术, 2021, 27(6): 115-120. DOI:  10.13226/j.issn.1006-6772.21041602.

LI Y, LUO L, WU J Q, et al. Effect of load change of an 1 000 MW coal-fired unit on particulate matter emission [J]. Clean Coal Technology, 2021, 27(6): 115-120. DOI:  10.13226/j.issn.1006-6772.21041602.
[21] 柏发桥. 1 000 MW燃煤机组超低排放控制及节能优化技术 [J]. 能源科技, 2020, 18(12): 93-96.

BAI F Q. Ultra-low emission control and energy-saving optimization technology for 1 000 MW coal-fired unit [J]. Energy Science and Technology, 2020, 18(12): 93-96.
[22] 专家观点. 燃煤烟气多种污染物控制技术发展到超低排放阶段, 加强氨的使用和排放控制十分必要 [J]. 中国环保产业, 2021(5): 12-13. DOI:  10.3969/j.issn.1006-5377.2021.05.003.

Expert Opinion. The development of various pollutant control technologies for coal-fired flue gas has reached the stage of ultra-low emission, and it is necessary to strengthen the use and emission control of ammonia [J]. China Environmental Protection Industry, 2021(5): 12-13. DOI:  10.3969/j.issn.1006-5377.2021.05.003.
[23] 蒋志浩, 杜宇航, 邱佳俊, 等. 660 MW燃煤机组污染物协同脱除技术的应用 [J]. 发电设备, 2021, 35(3): 167-171. DOI:  10.19806/j.cnki.fdsb.2021.03.004.

JIANG Z H, DU Y H, QIU J J, et al. Application of synergistic removal technology for flue gas pollutants in a 660 MW coal-fired unit [J]. Power Equipment, 2021, 35(3): 167-171. DOI:  10.19806/j.cnki.fdsb.2021.03.004.
[24] 王烁, 王玮, 李治国, 等. SNCR脱硝技术应用的要点及探索 [J]. 价值工程, 2019, 38(27): 191-193. DOI:  10.14018/j.cnki.cn131085/n.2019.27.075.

WANG S, WANG W, LI Z G, et al. Key points and exploration of application of SNCR denitration technology [J]. Value Engineering, 2019, 38(27): 191-193. DOI:  10.14018/j.cnki.cn131085/n.2019.27.075.
[25] 张焕亨. PNCR脱硝技术及其试验研究 [J]. 锅炉技术, 2021, 52(4): 65-68. DOI:  10.3969/j.issn.1672-4763.2021.04.013.

ZHANG H H. PNCR denitration technology and its experimental research [J]. Boiler Technology, 2021, 52(4): 65-68. DOI:  10.3969/j.issn.1672-4763.2021.04.013.
[26] 蒋奕锋, 王家伟, 汪涛, 等. 1 000 MW超低排放燃煤机组湿法脱硫和湿式电除尘运行性能及废水排放工艺研究 [J]. 现代化工, 2021, 41(增刊1): 324-327. DOI:  10.16606/j.cnki.issn0253-4320.2021.S.067.

JIANG Y F, WANG J W, WANG T, et al. Operating performance and wastewater emission situation of wet desulfurization unit and wet electrostatic precipitator in a 1 GW ultra-low emission coal-fired plant [J]. Modern Chemical Industry, 2021, 41(Supp. 1): 324-327. DOI:  10.16606/j.cnki.issn0253-4320.2021.S.067.
[27] 付瑞超, 罗春欢, 苏庆泉. 钙基半干法燃煤烟气脱硫技术的影响因素 [J]. 环境工程学报, 2022, 16(4): 1248-1255. DOI:  10.12030/j.cjee.202109130.

FU R C, LUO C H, SU Q Q. Influencing factors of coal-fired flue gas desulfurization by calcium-based semi-dry method [J]. Chinese Journal of Environmental Engineering, 2022, 16(4): 1248-1255. DOI:  10.12030/j.cjee.202109130.
[28] 鲁晓强, 鲁韵. 电厂锅炉脱硫脱硝及烟气除尘技术 [J]. 电力设备管理, 2021(3): 114-116+121.

LU X Q, LU Y. Power plant boiler desulfurization, denitrification and flue gas dust removal technology [J]. Electric Power Equipment Management, 2021(3): 114-116+121.
[29] 宋晓刚, 刘琦. 炉内石灰石脱硫技术在大型循环流化床锅炉的应用 [J]. 吉林电力, 2013, 41(3): 14-16. DOI:  10.3969/j.issn.1009-5306.2013.03.005.

SONG X G, LIU Q. Application of limestone desulfurization technique in the furnace of large scale CFB boiler [J]. Jilin Electric Power, 2013, 41(3): 14-16. DOI:  10.3969/j.issn.1009-5306.2013.03.005.
[30] 李津津, 陈扉然, 马修卫, 等. 燃煤有机污染物排放及其控制技术研究展望 [J]. 化工进展, 2019, 38(12): 5539-5547. DOI:  10.16085/j.issn.1000-6613.2019-0380.

LI J J, CHEN F R, MA X W, et al. Emission of coal-fired VOCs and prospect of control technology [J]. Chemical Industry and Engineering Progress, 2019, 38(12): 5539-5547. DOI:  10.16085/j.issn.1000-6613.2019-0380.
[31] 林国辉, 杨富鑫, 李正鸿, 等. 燃煤机组颗粒物排放特性及其有机成分分析 [J]. 洁净煤技术, 2022, 28(2): 145-151. DOI:  10.13226/j.issn.1006-6772.21070401.

LIN G H, YANG F X, LI Z H, et al. Analysis of emission characteristics of particulate matter and organic pollutants from coal-fired power plant [J]. Clean Coal Technology, 2022, 28(2): 145-151. DOI:  10.13226/j.issn.1006-6772.21070401.
[32] 王宏亮, 许月阳, 薛建明, 等. 燃煤机组烟气汞污染物全过程综合控制技术研究 [J]. 电力科技与环保, 2020, 36(6): 18-22. DOI:  10.3969/j.issn.1674-8069.2020.06.005.

WANG H L, XU Y Y, XUE J M, et al. Research on whole-process control technologies of gaseous mercury from coal-fired units [J]. Electric Power Environmental Protection, 2020, 36(6): 18-22. DOI:  10.3969/j.issn.1674-8069.2020.06.005.
[33] 李洋, 刘芳琪, 周俊波, 等. 1 000 MW超低排放燃煤机组SCR和LLT-ESP对颗粒物排放特性的影响 [J]. 煤炭转化, 2022, 45(3): 71-79. DOI:  10.19726/j.cnki.ebcc.202203009.

LI Y, LIU F Q, ZHOU J B, et al. Effects of SCR and LLT-ESP on PM emission properties from a 1 000 MW coal-fired unit [J]. Coal Conversion, 2022, 45(3): 71-79. DOI:  10.19726/j.cnki.ebcc.202203009.
[34] 王岳. 热源厂燃煤烟尘低排放控制技术研究 [J]. 建筑技术开发, 2022, 49(8): 116-118. DOI:  10.3969/j.issn.1001-523X.2022.08.038.

WANG Y. Research on low emission control technology of coal combustion in heat source plant [J]. Building Technique Development, 2022, 49(8): 116-118. DOI:  10.3969/j.issn.1001-523X.2022.08.038.
[35] 安恩政, 何仙平. 探究电厂锅炉脱硫脱硝及烟气除尘技术 [J]. 天津化工, 2021, 35(1): 83-85. DOI:  10.3969/j.issn.1008-1267.2021.01.029.

AN E Z, HE X P. Research on desulfurization, denitration and flue gas dust removal technology of power plant boilers [J]. Tianjin Chemical Industry, 2021, 35(1): 83-85. DOI:  10.3969/j.issn.1008-1267.2021.01.029.
[36] 段璐, 王述浩, 李水清. 基于群平衡模拟的低低温电除尘器协同脱除PM2.5和SO3研究 [J]. 中国电机工程学报, 2020, 40(12): 3721-3728. DOI:  10.13334/j.0258-8013.pcsee.190541.

DUAN L, WANG S H, LI S Q. Study on the ultralow cold-side electrostatic precipitation for synergistic removal of PM2.5 and SO3 by the population balance model [J]. Proceedings of the CSEE, 2020, 40(12): 3721-3728. DOI:  10.13334/j.0258-8013.pcsee.190541.
[37] 马占海, 徐超, 赵海宝, 等. 低低温电除尘器与电袋除尘器的技术经济对比分析 [J]. 中国环保产业, 2022(1): 59-65. DOI:  10.3969/j.issn.1006-5377.2022.01.014.

MA Z H, XU C, ZHAO H B, et al. Technical and economic comparison and analysis between LLT-ESP and electrostatic fabric filter [J]. China Environmental Protection Industry, 2022(1): 59-65. DOI:  10.3969/j.issn.1006-5377.2022.01.014.
[38] 张恒. 燃煤电厂氮氧化物减排技术方案选择研究 [D]. 保定: 华北电力大学, 2015. DOI: 10.7666/d.D760039.

ZHANG H. The selection of Nitrogen Oxide emissions reduction technology solutions for coal-fired power plant [D]. Baoding: North China Electric Power University, 2015. DOI: 10.7666/d.D760039.
[39] 胡小刚. 燃煤电厂烟气脱硝工艺的技术经济评价研究 [D]. 西安: 西北大学, 2015.

HU X G. The research of technical and economic evaluation on the flue gas technologies of coal-fired power plants [D]. Xi'an: Northwest University, 2015.
[40] 张胜寒, 张彩庆, 胡文培. 电厂湿法烟气脱硫系统费用效益分析 [J]. 华东电力, 2011, 39(2): 195-197.

ZHANG S H, ZHANG C Q, HU W P. Benefit-cost analysis of wet flue gas desulfurization system in power plant [J]. East China Electric Power, 2011, 39(2): 195-197.