[1] 张立群, 张玉峰, 王少华, 等. 基于工程仿真机的设计验证管理方法研究 [J]. 仪器仪表用户, 2021, 28(7): 49-52. DOI:  10.3969/j.issn.1671-1041.2021.07.013.

ZHANG L Q, ZHANG Y F, WANG S H, et al. Validation and verification management method of nuclear power plant full engineering simulator [J]. Instrumentation, 2021, 28(7): 49-52. DOI:  10.3969/j.issn.1671-1041.2021.07.013.
[2] 曲伟. 核电站仿真机在首堆建设中的作用 [J]. 仪器仪表用户, 2019, 26(9): 64-66. DOI:  10.3969/j.issn.1671-1041.2019.09.018.

QU W. The role of nuclear power plant simulator in the first unit construction [J]. Instrumentation, 2019, 26(9): 64-66. DOI:  10.3969/j.issn.1671-1041.2019.09.018.
[3] 刘宇穗. 新型核电机组启停及给水系统控制策略 [J]. 南方能源建设, 2020, 7(2): 127-131. DOI:  10.16516/j.gedi.issn2095-8676.2020.02.019.

LIU Y S. Control strategy of start/stop and feed water system of new type nuclear power plant [J]. Southern Energy Construction, 2020, 7(2): 127-131. DOI:  10.16516/j.gedi.issn2095-8676.2020.02.019.
[4] 许文朝, 姜夏岚, 秦治国. 全范围模拟机对核电站控制优化前的验证与预演 [J]. 系统仿真和技术, 2020, 16(2): 118-122. DOI:  10.16812/j.cnki.cn31-1945.2020.02.011.

XU W C, JIANG X L, QIN Z G. Verification and rehearsal before control optimization of nuclear power plant based on FSS [J]. System Simulation Technology, 2020, 16(2): 118-122. DOI:  10.16812/j.cnki.cn31-1945.2020.02.011.
[5] 李亮国, 苏前华, 郝陈玉, 等. 二次侧非能动余热排出系统运行及换热特性研究 [J]. 核科学与工程, 2020, 40(4): 532-539. DOI:  10.3969/j.issn.0258-0918.2020.04.003.

LI L G, SU Q H, HAO C Y, et al. Investigation on operation and heat transfer performance of advanced secondary passive residual heat removal system [J]. Nuclear Science Engineering, 2020, 40(4): 532-539. DOI:  10.3969/j.issn.0258-0918.2020.04.003.
[6] 章旋, 茆荣, 曹建亭. 核电站全范围模拟机关键技术探讨 [J]. 热力发电, 2011, 40(1): 16-18. DOI:  10.3969/j.issn.1002-3364.2011.01.016.

ZHANG X, MAO R, CAO J T. An approach to the key technologies of full scale simulator in nuclear power plant [J]. Thermal Power Generation, 2011, 40(1): 16-18. DOI:  10.3969/j.issn.1002-3364.2011.01.016.
[7] 张登超, 高连国, 方国辉. 核电厂数字化仪控系统全范围模拟机仿真方式研究及应用 [J]. 自动化博览, 2020(7): 52-56.

ZHANG D C, GAO L G, FANG G H. Research and application on simulation modes of nuclear full scope simulator for nuclear power plant digital control system [J]. Automation Panorama, 2020(7): 52-56.
[8] 李峰, 刘昌文, 吴清, 等. 华龙一号二次侧非能动余热排出系统功能论证 [J]. 核动力工程, 2019, 40(增刊1): 28-31. DOI:  10.13832/j.jnpe.2019.S1.0028.

LI F, LIU C W, WU Q, et al. Demonstration of passive residual heat removal system on HPR1000 secondary side [J]. Nuclear Power Engineering, 2019, 40(Supp. 1): 28-31. DOI:  10.13832/j.jnpe.2019.S1.0028.
[9] 熊万玉, 宫厚军, 郗昭, 等. RELAP5程序应用于二次侧非能动余热排出系统设计的初步评价 [J]. 核动力工程, 2015, 36(2): 143-146. DOI:  10.13832/j.jnpe.2015.02.0143.

XIONG W Y, GONG H J, XI Z, et al. Preliminary evaluation of RELAP5 for design of secondary side passive residual heat removal system [J]. Nuclear Power Engineering, 2015, 36(2): 143-146. DOI:  10.13832/j.jnpe.2015.02.0143.
[10] 徐海岩, 吴小航, 卢冬华, 等. 二次侧非能动余热排出系统传热能力试验研究 [J]. 原子能科学技术, 2018, 52(3): 447-452. DOI:  10.7538/yzk.2017.youxian.0304.

XU H Y, WU X H, LU D H, et al. Test sduty on heat transfer capability of advanced secondary side passive residual heat removal system [J]. Atomic Energy Science and Technology, 2018, 52(3): 447-452. DOI:  10.7538/yzk.2017.youxian.0304.
[11] 李亮国, 傅孝良, 文青龙, 等. 多系统耦合下自然循环特性试验研究与计算分析 [J]. 核科学与工程, 2018, 38(3): 403-410. DOI:  10.3969/j.issn.0258-0918.2018.03.010.

LI L G, FU X L, WEN Q L, et al. Experimental and numerical investigation of natural circulation characteristics of multi-coupled systems [J]. Nuclear Science and Engineering, 2018, 38(3): 403-410. DOI:  10.3969/j.issn.0258-0918.2018.03.010.
[12] 王冠一, 陈宝龙, 吴鹏, 等. 基于全范围模拟机对压水堆MSLB叠加SGTR事故分析 [J]. 核科学与工程, 2019, 39(4): 613-618. DOI:  10.3969/j.issn.0258-0918.2019.04.018.

WANG G Y, CHEN B L, WU P, et al. Analysis of pressurized water reactor's MSLB with SGTR based on full-scope simulator [J]. Nuclear Science Engineering, 2019, 39(4): 613-618. DOI:  10.3969/j.issn.0258-0918.2019.04.018.
[13] 于承鑫, 郑伟. SBO +MBLOCA事故演习序列应用的仿真研究 [J]. 计算机仿真, 2021, 38(1): 446-450.

YU C X, ZHENG W. The simulation research on the application of SBO+MBLOCA accident drill sequence [J]. Computer Simulation, 2021, 38(1): 446-450.
[14] 姜夏岚, 李辉, 秦治国. ACPR1000主回路与稳压器硼浓度差仿分析 [J]. 核动力工程, 2020, 41(5): 110-115. DOI:  10.13832/j.jnpe.2020.05.0110.

JIANG X L, LI H, QIN Z G. Simulation analysis of boron concentration difference between primary circuit and pressurizer of ACPR1000 [J]. Nuclear Power Engineering, 2020, 41(5): 110-115. DOI:  10.13832/j.jnpe.2020.05.0110.
[15] 王剑. ATWT在CP600全范围模拟机中的实现及其改进建议 [J]. 科技视界, 2018(3): 136-137. DOI:  10.3969/j.issn.2095-2457.2018.03.054.

WANG J. Realization of ATWT in CP600 full range simulator and suggestions for improvement [J]. Science & Technology Vision, 2018(3): 136-137. DOI:  10.3969/j.issn.2095-2457.2018.03.054.