[1] European Wind Energy Association(EWEA). The economics of wind energy [M]. Brussels,Belgium:EWEA,2015.
[2] CRUZ J,MAIREAD A. Floating offshore wind energy:the next generation of wind energy [M]. Berlin:Springer,2016.
[3] HERONEMUS W E. Pollution-free energy from offshore winds [C]//Marine Technology Society. 8th Annual Conference and Exposition,Washington D.C.,United States,Sep. 11-13,1972. Washington D.C.:Marine Technology Society,1972.
[4] HENDERSON A R,WITCHER D. Floating offshore wind energy—a review of the current status and an assessment of the prospects [J].Wind Engineering,2010,34(1):1-16.
[5] MUSIAL W D,BUTTERFIELD C P,BOONE A. Feasibility of floating platform systems for wind turbines [C]//ASME. 23rd ASME Wind Energy Symposium Proceedings,Reno,Nevada,Jan.,2004. New York:ASME,2004. NREL/CP-500-34874.
[6] WAYMAN E N,SCLAVOUNOS P D,BUTTERFIELD S,et al.Coupled dynamic modeling of floating wind turbine systems:Preprint [J]. Wear,2006(302):1583-1591.
[7] WANG C M,UTSUNOMIYA T,WEE S C,et al. Research on floating wind turbines:a literature survey [J]. The IES Journal Part A:Civil & Structural Engineering,2010,3(4):267-277.
[8] 盛振邦,刘应中. 船舶原理(上册) [M]. 上海:上海交通大学出版社,2003:50-51.
[9] American Bureau of Shipping. Rules for building and classing mobile offshore drilling units [S]. Houston,Texas,USA:ABO Shipping Publishing,2008.
[10] International Maritime Organization. International Code on Intact Stability:IMO IB874E-2009 [S]. London,UK:IMO Publishing,2008.
[11] COLLU M,MAGGI A,GUALENI P,et al. Stability Requirements for Floating Offshore Wind Turbine(FOWT) during Assembly and Temporary Phases:Overview and Application [J]. Ocean Engineering,2014(84):164-175.
[12] 唐友刚,张素侠,张若瑜, 等. 深海系泊系统动力特性研究进展 [J]. 海洋工程,2008,26(1):120-126.

TANG Y G,ZHANG S X,ZHANG R Y,et al. Advance of study on dynamic characters of mooring systems in deep water [J].The Ocean Engineering,2008,26(1):120-126.
[13] 童波,杨建民,李欣. 深水半潜平台悬链线式系泊系统耦合动力分析 [J]. 中国海洋平台,2008,23(6):1-7.

TONG B,YANG J M,LI X. Coupled dynamic analysis of catenary mooring system for the deepwater semi-submerged platform [J].China Offshore Platform,2008,23(6):1-7.
[14] 陈鹏,马骏,杨青松. 深水半潜平台张紧式系泊系统耦合动力响应研究 [J]. 大连海事大学学报,2013,39(1):65-69.

CHEN P,MA J,YANG Q S. Coupled-dynamic response investigation of taut-wire mooring systems for deepwater semi-subermersible platform [J]. Journal of Dalian Maritime University,2013,39(1): 65-69.
[15] 赵君龙. 深水张力腿平台系泊系统耦合动力分析 [D]. 哈尔滨:哈尔滨工程大学,2012.
[16] TENG Y,TAN J H,KIM J,et al. Tension leg platform design with consideration of tendon springing and ringing [C]//Anon.Offshore Technology Conference Asia,Kuala Lumpur,Malaysia. Mar. 22-25,2016.
[17] CHAN CHOW M N. Mooring system design for a floating wind farm in very deep water-European Wind Energy Master Thesis [D].Norway:Norwegian University of Science and Technology,2019.
[18] PEREYRA B T. Design of a counter weight suspension system for the Tetraspar floating offshore wind turbine [D]. Norway:Norwegian University of Science and Technology,2018.
[19] 邓慧静. 海上浮式风机平台稳性及锚泊系统性能研究 [D]. 哈尔滨:哈尔滨工程大学, 2012.
[20] PHILIPPE M,BABARIT A,FERRANT P. Modes of response of an offshore wind turbine with directional wind and waves [J].Renewable Energy,2013,49(1):151-155.
[21] KARIMIRAD,M. Modeling aspects of a floating wind turbine for coupled wave–wind-induced dynamic analyses [J]. Renewable Energy,2013(53):299-305.
[22] YILMAZ O,INCECIK A. Extreme motion response analysis of moored semi-submersibles [J]. Ocean Engineering,1996,23(6):497-517.
[23] 宋宪仓,王树青,杜君峰. 二阶差频力对半潜式平台系泊锚链疲劳损伤影响 [C]//中国海洋工程学会工程分会. 第十七届中国海洋(岸)工程学术讨论会论文集(上),南宁,2015-11-13. 北京:CNKI,2015:292-297.
[24] TANINOKI R,ABE K,SUKEGAWA T,et al. Dynamic cable system for floating offshore wind power generation [J]. SEI Technical review,2017,84:53.
[25] ZHANG L,ZOU J,HUANG E W. Mathieu instability evaluation for DDCV/SPAR and TLP tendon design [C]//Anon. Proceedings of the 11th Offshore Symposium,Society of Naval Architect and Marine Engineering (SNAME),Houston. 2002. [S.l.]:SNAME,41-49.
[26] YONG-PYO H,DONG-YEON L,YONG-HO C,et al. An experimental study on the extreme motion responses of a spar platform in the heave resonant waves [C]//Anon. The Fifteenth International Offshore and Polar Engineering Conference. [S.l.]:International Society of Offshore and Polar Engineers,2005.
[27] DUAN F,HU Z,WANG J. Investigation of the VIMs of a spartype FOWT using a model test method [J]. Journal of Renewable and Sus-tainable Energy,2016,8(6):063301.
[28] COULLING A J,GOUPEE A J,ROBERTSON A N,et al.Importance of second-order difference-frequency wave-diffraction forces in the validation of a fast semi-submersible floating wind turbine model [C]//American Society of Mechanical Engineers Digital Collection. 32nd International Conference on Ocean,Offshore and Arctic En-gineering. New York:ASME,2013.
[29] GUEYDON S,DUARTE T,JONKMAN J. Comparison of second-order loads on a semisubmersible floating wind turbine [C]//American Society of Mechanical Engineers Digital Collection. 33rd International Conference on Ocean, Offshore and Arctic Engineering. San Francisco,California,8 June 2014. New York: ASME,2014.
[30] MATHA D. Model development and loads analysis of an offshore wind turbine on a tension leg platform with a comparison to other floating turbine concepts:April 2009[R]. USA:National Renewable Energy Lab. (NREL),Golden,Co.,2010.
[31] BAE Y H,KIM M H. Rotor-floater-tether coupled dynamics including second-order sum-frequency wave loads for a mono- column- TLP-type FOWT (floating offshore wind turbine) [J].Ocean Engineering,2013(61):109-122.
[32] RHO J B,CHOI H S,SHIN H S,et al. Heave and pitch motions of a spar platform with damping plate [C]//International Society of Off-shore and Polar Engineers. The 12th International Offshore and Polar Engineering Conference,2002.
[33] TRAN T T,KIM D H. The aerodynamic interference effects of a floating offshore wind turbine experiencing platform pitching and yawing motions [J]. Journal of Mechanical Science and Technology,2015,29(2):549-561.
[34] FARRUGIA R,SANT T,MICALLEF D. A study on the aerodynamics of a floating wind turbine rotor [J]. Renewable energy,2016,86:770-784.
[35] BORISADE F. Qualification of innovative floating substructures for 10 MW wind turbines and water depths greater than 50 m [R].European Union:D7.4:State-of-the-Art FOWT Design Practice and Guidelines,2016.
[36] DUAN F,HU Z,NIEDZWECKI J M. Model test investigation of a spar floating wind turbine [J]. Marine Structures,2016(49):76-96.
[37] KARIMIRAD M,MOAN T. Effect of aerodynamic and hydrodynamic damping on dynamic response of spar type floating wind tur-bine [C]//Anon. Proceeding of European Wind Energy Conference, Poland,Warsaw,2010.
[38] LARSENT J,HANSON T D. A method to avoid negative damped low frequent tower vibrations for a floating,pitch controlled wind turbine[J]. Journal of Physics:Conference Series. IOP Publishing,2007,75(1):012073.
[39] CHEN J H,HU Z Q,LIU G L,WAN D C. Study on rigid-flexible coupling effects of floating offshore wind turbines [J]. China Ocean Engineering,2019,33(1):1-13.
[40] WITHEE J E. Fully coupled dynamic analysis of a floating wind turbine system [R]. Cambridge:Massachusetts Inst. of Tech Cam-bridge,2004.
[41] MATHA D,SCHLIPF M,CORDLE A,et al. Challenges in simulation of aerodynamics,hydrodynamics,and mooring-line dynamics of floating offshore wind turbines [R]. USA:National Renewable Energy Lab.(NREL),2011.
[42] JONKMAN J M,BUHLJR M L. FAST user’s guide [R]. USA:National Renewable Energy Laboratory (NREL),2005.NREL/EL-500-38230.
[43] CHEN J H,HU Z Q,LIU G L,et al. Coupled aero-hydro-servo- elastic methods for floating wind turbines [J]. Renewable Energy,2019(130):139-153.
[44] CORDLE A,JONKMAN J. State of the art in floating wind turbine design tools [R]. USA:National Renewable Energy Lab. (NREL),2011.
[45] JONKMAN J,MUSIAL W. Offshore code comparison collaboration(OC3) for IEA Wind Task 23 offshore wind technology and deployment [R]. USA:National Renewable Energy Lab. (NREL),2010.
[46] ROBERTSON A,JONKMAN J,MUSIAL W,et al. Offshore code comparison collaboration,continuation:Phase II results of a floating semisubmersible wind system[R]. USA:National Renewable Energy Lab. (NREL),2013. NREL/CP-5000-60600.
[47] ROBERTSON A N,WENDT F,JONKMAN J M,et al. OC5 project phase II:validation of global loads of the DeepCwind floating sem-isubmersible wind turbine [J]. Energy Procedia,2017(137):38-57.
[48] FOWLER M J,KIMBALL R W,THOMAS D A,et al. Design and testing of scale model wind turbines for use in wind/wave basin model tests of floating offshore wind turbines [C]//ASME.32nd International Conference on Ocean,Offshore and Arctic Engineering. American Society of Mechanical Engineers,Nantes,France,Jun. 9-14,2013. V008T09A004-V008T09A004.
[49] CERMELLI C,AUBAULT A,RODDIER D,et al. Qualification of a semi-submersible floating foundation for multi-megawatt tur-bines [C]//Anon. Offshore Technology Conference. 2010.
[50] GOUPEE A J,KOO B J,KIMBALL R W,et al. Experimental comparison of three floating wind turbine concepts [J]. Journal of Offshore Mechanics and Arctic Engineering,2014,136(2):020906.
[51] DUAN F,HU Z Q,NIEDZWECKI J M. Model test investigation of a spar floating wind turbine [J]. Marine Structures,2016(49):76-96.
[52] CHEN J H,HU Z Q,WAN D C,et al. Comparisons of the dynamical characteristics of a semi-submersible floating offshore wind turbine based on two different blade concepts [J]. Ocean Engineering,2018(153):305-318.
[53] SAUDER T,CHABAUD V,THYS M,et al. Real-time hybrid model testing of a braceless semi-submersible wind turbine:Part I—The hybrid approach [C]//ASME. 35th International Conference on Ocean,Offshore and Arctic Engineering. American Society of Mechanical Engineers Digital Collection,Busan,South Korea,Jun. 19-24,2016.
[54] MACIEL J G. The Windfloat Project [R]. EDP:Lisbon,Portugal,2010.
[55] JAMES R,ROS M C. Floating offshore wind:market and technology review [R]. London:Carbon Trust,2015.
[56] SKAARE B,NIELSEN F G,HANSON T D,et al. Analysis of measurements and simulations from the hywind demo floating wind turbine [J]. Wind Energy,2015,18(6):1105-1122.
[57] American Bureau of Shipping. Guide for building and classing floating offshore wind turbine installations:ABS Guideline#195 [S]. New York:American Bureau of Shipping,2013.
[58] Bureau Veritas. Classification and Certification of Floating Offshore Wind Turbines:NI 572 DT R01 E [S]. France:BV Marine &Offshore Division,2015.
[59] International Electro technical Commission. Wind energy generation systems-Part 3-2:design requirements for floating offshore wind turbines:IEC TS 61400-3-2 [S]. Geneva,Switzerland:IEC,2019.
[60] DNV GL. Coupled analysis of floating wind turbines:DNVGL-RP-0286 [S]. Norway:DNV GL,2019.
[61] DNV GL. Certification of floating wind turbines:DNVGL-SE-0422 [S]. Norway:DNV GL,2018.
[62] STIESDAL H. Hywind:The world’s first floating MW-scale wind turbine [J]. Wind Directions,2009(31):52-53.
[63] Principle Power Press Release. Principle power and edp sign MOA for phased offshore wind power project [EB/OL]. (2009-02-18)[2020-01-11]. http://www.principlepowerinc.com/news/press_EDP_MOA.html.
[64] Fukushima Offshore Wind Consortium. Fukushima floating offshore wind farm demonstration 27 Project (Fukushima forward) [EB/OL].(2014-08-02)[2020-01-11]. http://www.fukushima-forward.jp/pdf/pamphlet3.pdf.
[65] BEYER F,CHOISNET T,KRETSCHMER M,et al. Coupled MBS-CFD simulation of the IDEOL floating offshore wind turbine foundation compared to wave tank model test data [C]//ISOPE.25th International Ocean and Polar Engineering Conference,Kona,Big Island,HI,USA,Jun. 21-26,2015. Kona:ISOPE,2015.
[66] WALSH C. Offshore wind in Europe–key trends and statistics 2019 [R]. Brussels:Wind Europe,Brussels,2020.