[1] SANCHEZ D L, KAMMEN D M. A commercialization strategy for carbon-negative energy [J]. Nature Energy, 2016, 1(1): 15002. DOI:  10.1038/nenergy.2015.2.
[2] DEL POZO C A, CLOETE S, CLOETE J H, et al. The potential of chemical looping combustion using the gas switching concept to eliminate the energy penalty of CO2 capture [J]. International Journal of Greenhouse Gas Control, 2019, 83: 265-281. DOI:  10.1016/j.ijggc.2019.01.018.
[3] AHMED U, ZAHID U, LEE Y. Process simulation and integration of IGCC systems for H2/syngas/electricity generation with control on CO2 emissions [J]. International Journal of Hydrogen Energy, 2019, 44(14): 7137-7148. DOI:  10.1016/j.ijhydene.2019.01.276.
[4] 谢浩, 张忠孝, 李振忠, 等. IGCC常规岛系统优化设计研究 [J]. 洁净煤技术, 2011, 17(6): 30-35. DOI:  10.3969/j.issn.1006-6772.2011.06.010.

XIE H, ZHANG Z X, LI Z Z, et al. Study on optimization design of conventional island system in IGCC [J]. Clean Coal Technology, 2011, 17(6): 30-35. DOI:  10.3969/j.issn.1006-6772.2011.06.010.
[5] KAPETAKI Z, AHN H, BRANDANI S. Detailed process simulation of pre-combustion IGCC plants using coal-slurry and dry coal gasifiers [J]. Energy Procedia, 2013, 37: 2196-2203. DOI:  10.1016/j.egypro.2013.06.099.
[6] CAI L L, WU X Y, ZHU X F, et al. High-performance oxygen transport membrane reactors integrated with IGCC for carbon capture [J]. Aiche Journal, 2020, 66(7): e164247. DOI:  10.1002/aic.16247.
[7] DESCAMPS C, BOUALLOU C, KANNICHE M. Efficiency of an integrated gasification combined cycle (IGCC) power plant including CO2 removal [J]. Energy, 2008, 33(6): 874-881. DOI:  10.1016/j.energy.2007.07.013.
[8] 毛健雄. 燃煤耦合生物质发电 [J]. 分布式能源, 2017, 2(5): 47-54. DOI:  10.16513/j.cnki.10-1427/tk.2017.05.008.

MAO J X. Co-firing biomass with coal for power generation [J]. Distributed Energy, 2017, 2(5): 47-54. DOI:  10.16513/j.cnki.10-1427/tk.2017.05.008.
[9] ABAIMOV N A, OSIPOV P V, RYZHKOV A F. Experimental and computational study and development of the bituminous coal entrained-flow air-blown gasifier for IGCC [J]. Journal of Physics:Conference series, 2016, 754(11): 112001. DOI:  10.1088/1742-6596/754/11/112001.
[10] GIUFFRIDA A, MOIOLI S, ROMANO M C, et al. Lignite-fired air-blown IGCC systems with pre-combustion CO2 capture [J]. International Journal of Energy Research, 2016, 40(6): 831-845. DOI:  10.1002/er.3488.
[11] WANG H R, YAN J B, YUAN Y. Thermal and environmental performance of IGCC system with wood dust as feed [J]. Journal of Chemical and Pharmaceutical Research, 2014, 6(6): 2769-2778.
[12] OKEKE I J, ADAMS II T A. Systems Design of a petroleum coke IGCC power plant: technical, economic, and life cycle perspectives [J]. Computer Aided Chemical Engineering, 2019, 47: 163-168. DOI:  10.1016/B978-0-12-818597-1.50026-6.
[13] SUBRAMANYAM V, GORODETSKY A. Integrated gasification combined cycle (IGCC) technologies [M]. Cambridge: Woodhead Publishing, 2017.
[14] 周贤, 许世森, 史绍平, 等. 回收余热的热电联产IGCC电站研究 [J]. 中国电机工程学报, 2014, 34(增刊1): 100-104. DOI:  10.13334/j.0258-8013.pcsee.2014.S.014.

ZHOU X, XU S S, SHI S P, et al. Study on heat and power cogeneration IGCC plant with waste heat recovery [J]. Proceedings of the CSEE, 2014, 34(Supp. 1): 100-104. DOI:  10.13334/j.0258-8013.pcsee.2014.S.014.
[15] 李召召, 代正华, 林慧丽, 等. IGCC–甲醇多联产系统节能分析 [J]. 中国电机工程学报, 2012, 32(20): 1-7. DOI:  10.13334/j.0258-8013.pcsee.2012.20.001.

LI Z Z, DAI Z H, LIN H L, et al. Analysis of energy saving of IGCC-methanol polygeneration systems [J]. Proceedings of the CSEE, 2012, 32(20): 1-7. DOI:  10.13334/j.0258-8013.pcsee.2012.20.001.
[16] 袁铁江, 胡克林, 关宇航, 等. 风电–氢储能与煤化工多能耦合系统及其氢储能子系统的EMR建模 [J]. 高电压技术, 2015, 41(7): 2156-2164. DOI:  10.13336/j.1003-6520.hve.2015.07.006.

YUAN T J, HU K L, GUAN Y H, et al. Modeling on hydrogen producing progress in EMR based wind power-hydrogen energy storage and coal chemical pluripotent coupling system [J]. High Voltage Engineering, 2015, 41(7): 2156-2164. DOI:  10.13336/j.1003-6520.hve.2015.07.006.
[17] TAPAN D, MATT F. Technical-Coal Gasification Technologies Subtopic d: Hybrid Integrated Concepts for IGCC (with CCS) and Non-Biomass Renewable Energy (e. g. Solar, Wind) [R]. Lancaster: Advanced Cooling Technologies, Inc., 2014.
[18] 杨承, 王旭升, 张驰, 等. 太阳能与压缩空气耦合储能的燃气轮机CCHP系统特性 [J]. 中国电机工程学报, 2017, 37(18): 5350-5358. DOI:  10.13334/J.0258-8013.PCSEE.161374.

YANG C, WANG X S, ZHANG C, et al. Performances of gas turbine-based CCHP system combined with solar and compressed air energy storage [J]. Proceedings of the CSEE, 2017, 37(18): 5350-5358. DOI:  10.13334/J.0258-8013.PCSEE.161374.
[19] UMAR M, MOORE S V, MEREDITH J S, et al. Aspen-based performance and energy modeling frameworks [J]. Journal of Parallel and Distributed Computing, 2018, 120: 222-236. DOI:  10.1016/j.jpdc.2017.11.005.
[20] CHI J L, LI K Y, ZHANG S J, et al. Process simulation and integration of IGCC systems with novel mixed ionic and electronic conducting membrane-based water gas shift membrane reactors for CO2 capture [J]. International Journal of Hydrogen Energy, 2020, 45(27): 13884-13898. DOI:  10.1016/j.ijhydene.2020.03.138.
[21] SCHWEIGER G, HEIMRATH R, FALAY B, et al. District energy systems: Modelling paradigms and general-purpose tools [J]. Energy, 2018, 164: 1326-1340. DOI:  10.1016/j.energy.2018.08.193.
[22] 马泉. 基于Ebsilon的NGCC机组热力系统性能监测与优化分析 [D]. 南京: 东南大学, 2018.

MA Q. Performance monitoring and optimization analysis of NGCC unit thermodynamic system based on Ebsilon [D]. Nanjing: Southeast University, 2018.
[23] 陈洪溪, 朱志劼. 带CO2捕捉的IGCC系统热力性能研究 [J]. 发电设备, 2010, 24(6): 405-408. DOI:  10.3969/j.issn.1671-086X.2010.06.004.

CHEN H X, ZHU Z J. Study on the IGCC system using CO2 capture technology [J]. Power Equipment, 2010, 24(6): 405-408. DOI:  10.3969/j.issn.1671-086X.2010.06.004.
[24] 张琨, 李寒旭. 干煤粉气流床气化过程数学模型的建立及求解 [J]. 广东化工, 2012, 39(4): 277-278, 280. DOI:  10.3969/j.issn.1007-1865.2012.04.149.

ZHANG K, LI H X. Development and solution of mathematical model for entrained-flow pulverized coal gasification process [J]. Guangdong Chemical Industry, 2012, 39(4): 277-278, 280. DOI:  10.3969/j.issn.1007-1865.2012.04.149.
[25] AHMED U, KIM C, ZAHID U, et al. Integration of IGCC and methane reforming process for power generation with CO2 capture [J]. Chemical Engineering and Processing: Process Intensification, 2017, 111: 14-24. DOI:  10.1016/j.cep.2016.10.020.
[26] HAN L, DENG G Y, LI Z, et al. Integration optimisation of elevated pressure air separation unit with gas turbine in an IGCC power plant [J]. Applied Thermal Engineering, 2017, 110: 1525-1532. DOI:  10.1016/j.applthermaleng.2016.09.059.
[27] SHI B, WU E, WU W, et al. Multi-objective optimization and exergoeconomic assessment of a new chemical-looping air separation system [J]. Energy Conversion and Management, 2018, 157: 575-586. DOI:  10.1016/j.enconman.2017.12.030.
[28] SHI B, WEN F, WU W. Performance evaluation of air-blown IGCC polygeneration plants using chemical looping hydrogen generation and methanol synthesis loop [J]. Energy, 2020, 200: 117564. DOI:  10.1016/j.energy.2020.117564.
[29] SHI B, XU W, WU E, et al. Novel design of integrated gasification combined cycle (IGCC) power plants with CO2 capture [J]. Journal of Cleaner Production, 2018, 195: 176-186. DOI:  10.1016/j.jclepro.2018.05.152.
[30] DEL POZO C A, CLOETE S, CLOETE J H, et al. The oxygen production pre-combustion (OPPC) IGCC plant for efficient power production with CO2 capture [J]. Energy Conversion and Management, 2019, 201: 112109. DOI:  10.1016/j.enconman.2019.112109.
[31] YOON S Y, CHOI B S, AHN J H, et al. Improvement of integrated gasification combined cycle performance using nitrogen from the air separation unit as turbine coolant [J]. Applied Thermal Engineering, 2019, 151: 163-175. DOI:  10.1016/j.applthermaleng.2019.01.110.
[32] DEL POZO C A, CLOETE S, CHIESA P, et al. Integration of gas switching combustion and membrane reactors for exceeding 50% efficiency in flexible IGCC plants with near-zero CO2 emissions [J]. Energy Conversion and Management:X, 2020, 7: 100050. doi:  10.1016/j.ecmx.2020.100050
[33] SHAIKH A R, WANG Q H, FENG Y, et al. Thermodynamic analysis of 350 MWe coal power plant based on calcium looping gasification with combined cycle [J]. International Journal of Greenhouse Gas Control, 2021, 110: 103439. DOI:  10.1016/j.ijggc.2021.103439.