[1] CHERUBINI A, PAPINI A, VERTECHY R, et al. Airborne wind energy systems: a review of the technologies [J]. Renewable and sustainable energy reviews, 2015, 51: 1461-1476. DOI:  10.1016/j.rser.2015.07.053.
[2] SCHMEHL R. Airborne wind energy: advances in technology development and research [M]. Singapore: Springer, 2018. DOI:  10.1007/978-981-10-1947-0.
[3] ARCHER C L, CALDEIRA K. Global assessment of high-altitude wind power [J]. Energies, 2009, 2(2): 307-319. DOI:  10.3390/en20200307.
[4] CANALE M, FAGIANO L, MILANESE M. KiteGen: a revolution in wind energy generation [J]. Energy, 2009, 34(3): 355-361. DOI:  10.1016/j.energy.2008.10.003.
[5] KOLAR J W, FRIEDLI T, KRISMER F, et al. Conceptualization and multiobjective optimization of the electric system of an airborne wind turbine [J]. IEEE journal of emerging and selected topics in power electronics, 2013, 1(2): 73-103. DOI:  10.1109/JESTPE.2013.2269672.
[6] SAEED M, KIM M H. Aerodynamic performance analysis of an airborne wind turbine system with NREL phase IV rotor [J]. Energy conversion and management, 2017, 134: 278-289. DOI:  10.1016/j.enconman.2016.12.021.
[7] WIJNJA J, SCHMEHL R, DE BREUKER R, et al. Aeroelastic analysis of a large airborne wind turbine [J]. Journal of guidance, control, and dynamics, 2018, 41(11): 2374-2385. DOI:  10.2514/1.G001663.
[8] 韩爽, 刘杉. 高空风力发电关键技术、现状及发展趋势[J/OL]. 分布式能源, 1-9 [2024-01-15]. http: //kns.cnki.net/kcms/detail/10.1427.tk.20231206.1329.002.html.

HAN S, LIU S. Key technologies, current status and development trends of high-altitude wind power generation[J/OL]. Distributed energy, 1-9 [2024-01-15]. http://kns.cnki.net/kcms/detail/10.1427.tk.20231206.1329.002.html.
[9] WEBER J, MARQUIS M, COOPERMAN A, et al. Airborne wind energy [R]. Golden: National Renewable Energy Laboratory, 2021.
[10] SOMMERFELD M, CRAWFORD C, MONAHAN A, et al. LiDAR-based characterization of mid-altitude wind conditions for airborne wind energy systems [J]. Wind energy, 2019, 22(8): 1101-1120. DOI:  10.1002/we.2343.
[11] SOMMERFELD M, DÖRENKÄMPER M, STEINFELD G, et al. Improving mesoscale wind speed forecasts using lidar-based observation nudging for airborne wind energy systems [J]. Wind energy science, 2019, 4(4): 563-580. DOI:  10.5194/wes-4-563-2019.
[12] 王大鹏, 孙强, 刘俊, 等. 风廓线雷达数据误差分析评估 [J]. 气象水文海洋仪器, 2021, 38(3): 5-8. DOI:  10.19441/j.cnki.issn1006-009x.2021.03.002.

WANG D P, SUN Q, LIU J, et al. Analysis and evaluation for data error of wind profile radar [J]. Meteorological, hydrological and marine instruments, 2021, 38(3): 5-8. DOI:  10.19441/j.cnki.issn1006-009x.2021.03.002.
[13] 康雪, 许晨, 李愉. 用L波段探空测风雷达评估风廓线雷达测风准确性 [J]. 成都信息工程大学学报, 2021, 36(3): 293-299. DOI:  10.16836/j.cnki.jcuit.2021.03.009.

KANG X, XU C, LI Y. Accuracy estimation of wind profile radar by L-band radar [J]. Journal of Chengdu University of Information Technology, 2021, 36(3): 293-299. DOI:  10.16836/j.cnki.jcuit.2021.03.009.
[14] 方桃妮, 黄艳, 叶妍婷, 等. 边界层风廓线雷达资料在浙中强对流天气中的应用 [J]. 气象科技, 2022, 50(3): 369-379. DOI:  10.19517/j.1671-6345.20210006.

FANG T N, HUANG Y, YE Y T, et al. Application of boundary wind profile radar to severe convective weather forecast in central Zhejiang [J]. Meteorological science and technology, 2022, 50(3): 369-379. DOI:  10.19517/j.1671-6345.20210006.
[15] 吴俊杰, 方璘王昊, 张中锋, 等. 面向机场的多普勒激光雷达风场反演技术研究 [J]. 航空计算技术, 2020, 50(6): 1-4. DOI:  10.3969/j.issn.1671-654X.2020.06.001.

WU J J, FANG L W H, ZHANG Z F, et al. Research on airport-oriented doppler lidar wind field inversion technology [J]. Aeronautical computing technique, 2020, 50(6): 1-4. DOI:  10.3969/j.issn.1671-654X.2020.06.001.
[16] 吕明华, 闫江雨, 姚仁太, 等. 风向的统计方法研究 [J]. 气象与环境学报, 2012, 28(3): 83-89. DOI:  10.3969/j.issn.1673-503X.2012.03.015.

LÜ M H, YAN J Y, YAO R T, et al. Study on the statistical method of wind direction [J]. Journal of meteorology and environment, 2012, 28(3): 83-89. DOI:  10.3969/j.issn.1673-503X.2012.03.015.
[17] LUNNEY E, BAN M, DUIC N, et al. A state-of-the-art review and feasibility analysis of high altitude wind power in northern Ireland [J]. Renewable and sustainable energy reviews, 2017, 68(2): 899-911. DOI:  10.1016/j.rser.2016.08.014.
[18] BECHTLE P, SCHELBERGEN M, SCHMEHL R, et al. Airborne wind energy resource analysis [J]. Renewable energy, 2019, 141: 1103-1116. DOI:  10.1016/j.renene.2019.03.118.
[19] SCHELBERGEN M, KALVERLA P C, SCHMEHL R, et al. Clustering wind profile shapes to estimate airborne wind energy production [J]. Wind energy science, 2020, 5(3): 1097-1120. DOI:  10.5194/wes-5-1097-2020.
[20] ONEA F, MANOLACHE A I, GANEA D. Assessment of the black sea high-altitude wind energy [J]. Journal of marine science and engineering, 2022, 10(10): 1463. DOI:  10.3390/jmse10101463.