[1] 王乃彦. 聚变能及其未来[M]. 北京: 清华大学出版社, 2001.

WANG N Y. Fusion energy and its future[M]. Beijing: Tsinghua University Press, 2001.
[2] 叶华龙. 核聚变能源的开发与利用 [J]. 中国高新科技, 2020(23): 41-42. DOI:  10.3969/j.issn.2096-4137.2020.23.016.

YE H L. Development and utilization of nuclear fusion energy [J]. China High-Tech, 2020(23): 41-42. DOI:  10.3969/j.issn.2096-4137.2020.23.016.
[3] PINES V, PINES V, CHAIT A, et al. Nuclear fusion reactions in deuterated metals [J]. Physical Review C, 2020, 101(4): 044609. DOI:  10.1103/physrevc.101.044609.
[4] WOODS L C. Theory of tokamak transport: new aspects for nuclear fusion reactor design[M]. Hoboken, NJ, USA: Wiley-VCH, 2006.
[5] 张一鸣, 曾丽萍, 沈欣媛, 等. ITER计划与聚变能发展战略 [J]. 核聚变与等离子体物理, 2013, 33(4): 359-365. DOI:  10.3969/j.issn.0254-6086.2013.04.012.

ZHANG Y M, ZENG L P, SHEN X Y, et al. ITER project and fusion energy development strategy [J]. Nuclear Fusion and Plasma Physics, 2013, 33(4): 359-365. DOI:  10.3969/j.issn.0254-6086.2013.04.012.
[6] 冯开明. 可控核聚变与ITER计划 [J]. 现代电力, 2006, 23(5): 82-88. DOI:  10.19725/j.cnki.1007-2322.2006.05.013.

FENG K M. Controlled fusion and the ITER project [J]. Modern Power, 2006, 23(5): 82-88. DOI:  10.19725/j.cnki.1007-2322.2006.05.013.
[7] 邢超, 吴凤凤. 大科学工程项目管理实施借鉴−以ITER项目为例 [J]. 核科学与工程, 2017, 37(3): 341-347. DOI:  10.3969/j.issn.0258-0918.2017.03.001.

XING C, WU F F. Revelation to mega science project implementation—from ITER project [J]. Nuclear Science and Engineering, 2017, 37(3): 341-347. DOI:  10.3969/j.issn.0258-0918.2017.03.001.
[8] ROSHAL A, AVANESOV S, KOKTSINSKAYA E, et al. Design and analysis of switching network units for the ITER coil power supply system [J]. Fusion Engineering and Design, 2011, 86(6-8): 1450-1453. DOI:  10.1016/j.fusengdes.2011.01.032.
[9] MONDINO P L. The ITER pulsed power supply system[C]// IEEE. 17th IEEE/NPSS Symposium on Fusion Engineering, San Diego CA USA, 6th Nov., 1997. USA: IEEE, 1997: 491-496.
[10] 傅鹏. 国际聚变堆ITER装置电源系统综述 [J]. 电力电子技术, 2014, 48(12): 1-7. DOI:  10.3969/j.issn.1000-100X.2014.12.001.

FU P. Summary of power supply system for ITER unit of international fusion reactor [J]. Power Electronic Technology, 2014, 48(12): 1-7. DOI:  10.3969/j.issn.1000-100X.2014.12.001.
[11] 李春杏. 浅谈超导体材料的应用与发展 [J]. 科技创新导报, 2009(29): 222. DOI:  10.16660/j.cnki.1674-098x.2009.29.029.

LI C X. Application and development of superconductor materials [J]. Science and Technology Innovation Herald, 2009(29): 222. DOI:  10.16660/j.cnki.1674-098x.2009.29.029.
[12] TAO J, BENFATTO I, GOFF J K, et al. ITER coil power supply and distribution system [J]. IEEE/NPSS Symposium on Fusion Engineering, 2011, 166(12): 1-8. DOI:  10.1109/SOFE.2011.6052201.
[13] 刘正之. 国际热核试验堆(ITER)超导磁体变流电源系统基准设计之回顾[C]// 中国电源学会. 全国特种电源技术学术交流会, 成都, 2012-09. 成都: 中国电源学会, 2012: 45-51.

LIU Z Z. Retrospection on the baseline design of converter power supply system for superconductive magnets of ITER[C]// China Power Society. National Symposium on Special Power Technology, Chengdu, Sep., 2012. Chengdu: China Power Society, 2012: 45-51.
[14] 罗德隆, 宋云涛, 段旭如, 等. 中国ITER计划采购包进展 [J]. 中国科学: 物理学 力学 天文学(英文版), 2019, 49(4): 15-25. DOI: 10.1360/ SSPMA2018-00285.

LUO D L, SONG Y T, DUAN X R, et al. Progress of ITER procurement package in China [J]. Science China(Physics, Mechanics and Astronomy), 2019, 49(4): 15-25. DOI: 10.1360/ SSPMA2018-00285.
[15] 罗安. 电网谐波治理和无功补偿技术及装备[M]. 北京: 中国电力出版社, 2006.

LUO A. Technology and equipment of harmonic control and reactive power compensation in power grid[M]. Beijing: China Electric Power Press, 2006
[16] 王旭东. 大功率测试平台的运行分析与升级方案设计[D]. 合肥: 中国科学技术大学, 2017.

WANG X D. Operation analysis and upgrade scheme design of high power test platform[D]. Hefei: University of Science and Technology of China, 2017.