高级检索

常压条件下乙醇掺混对氢气-甲烷-空气混合燃料层流燃烧特性的影响

Effects of Hydrogen Blending on Laminar Combustion Characteristics of Ethanol-Methane-Air Mixtures at Atmospheric Pressure

  • 摘要:
    目的 针对乙醇燃料低温冷启动性能差及火焰传播速率低的问题,研究了乙醇掺混对氢气-甲烷-空气混合燃料层流燃烧特性的影响。
    方法 采用球形膨胀火焰法实验测量常压下初始温度为370 K时,不同乙醇体积分数(20%、50%、80%)和当量比(0.7~1.4)的层流燃烧速度(LBV)。结合Chemkin-Pro耦合化学动力学模型进行数值模拟,使用独立的化学动力学机理控制方法,引入虚拟物质FH2以分离氢气的化学效应。通过全局反应路径分析,得出了混合气体的主要分解途径和氢气的生成来源。
    结果 掺氢比例增加显著提升LBV,峰值在当量比为1.2时达到最大值;乙醇比例升高则降低峰值速率并使其向高当量比偏移。修改机理得到了使用虚拟物质FH2分离化学效应的LBV,量化了此效应对层流燃烧速度的提升幅度,并明确了氢气在燃烧过程中对自由基生成和燃烧速率加速机制的贡献。乙醇分解主路径为C2H5OH→CH3CHO→CH3→CH2O→CO→CO2,通过敏感性分析得到氢气掺混主要通过R1(H+O2=O+OH)和R2(O+H2=H+OH)反应主导自由基生成,从而加速燃烧进程。
    结论 本研究明确了掺氢技术对多组分燃料燃烧动力学的协同优化路径,为清洁燃料设计及发动机高效燃烧控制提供了新思路。

     

    Abstract:
    Objective To address the challenges of poor low-temperature cold-start performance and low flame propagation rates associated with ethanol fuel, this study investigates the effects of ethanol blending on the laminar combustion characteristics of hydrogen-methane-air mixtures.
    Method The laminar burning velocities (LBVs) of ethanol-hydrogen-methane-air mixtures were experimentally measured at atmospheric pressure and an initial temperature of 370 K using the spherically expanding flame method. The experiments covered various ethanol volume fractions (20%, 50%, 80% in the fuel blend) and equivalence ratios (0.7~1.4). Numerical simulations were conducted using the Chemkin-Pro software coupled with a chemical kinetic model. To isolate the chemical effect of H2, a virtual species, FH2, was introduced into a modified mechanism. Furthermore, a global reaction path analysis was performed to identify the main decomposition pathways of the fuel mixture and the sources of H2 generation.
    Result The results show that increasing the H2 mole fraction in the fuel blend significantly enhances the LBV, with the peak value occurring at an equivalence ratio of 1.2. Conversely, increasing the ethanol proportion lowers the peak LBV and shifts it towards richer equivalence ratios. The modified mechanism, incorporating the virtual species FH2, successfully quantified the contribution of H2's chemical effect to the enhancement of LBV. The main decomposition pathway for ethanol was identified as C2H5OH→CH3CHO→CH3→CH2O→CO→CO2. Sensitivity analysis revealed that the presence of H2 primarily accelerates the combustion process by promoting the generation of key free radicals through reactions R1 (H+O2=O+OH) and R2 (O+H2=H+OH).
    Conclusion This research clarifies the synergistic optimization pathways of ethanol blending on the combustion dynamics of H2/CH4 fuels. The findings provide new insights for the design of clean fuels and the development of efficient combustion control strategies for engines.

     

/

返回文章
返回